"tests/vscode:/vscode.git/clone" did not exist on "70a9c476819405c7ebafa580e4a07ae590aa367c"
transformer.py 78.7 KB
Newer Older
silencealiang's avatar
silencealiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.

"""Transformer."""
import math
import os
from contextlib import nullcontext
from typing import Optional

import numpy as np
import torch
import torch.nn.functional as F

from megatron import core
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.legacy.model.enums import AttnMaskType, LayerType, AttnType
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.core.models.common.embeddings import apply_rotary_pos_emb
from megatron.core.jit import jit_fuser
from megatron.core.num_microbatches_calculator import get_num_microbatches
from megatron.core.parallel_state import (
    get_expert_tensor_and_model_parallel_group,
    get_tensor_model_parallel_group,
)
from megatron.core.tensor_parallel import (
    gather_from_sequence_parallel_region,
    reduce_scatter_to_sequence_parallel_region,
    get_cuda_rng_tracker,
    get_data_parallel_rng_tracker_name,
)
from megatron.legacy.model.enums import AttnMaskType, AttnType, LayerType
from megatron.legacy.model.fused_bias_gelu import bias_gelu_impl
from megatron.legacy.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.legacy.model.utils import (
    attention_mask_func,
    erf_gelu,
    get_norm,
    openai_gelu,
)
from megatron.training import get_args, get_timers

from .module import MegatronModule

try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    try:
        from flash_attn.flash_attn_interface import (
            flash_attn_varlen_func as flash_attn_unpadded_func,
        )
    except ImportError:
        flash_attn_unpadded_func = None

""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
    Transformer takes input of size [s, b, h] and returns a
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample
    (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=0.):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_state):
        if self.drop_prob == 0. or not self.training:
            return hidden_state
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
        random_tensor = keep_prob + \
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
        random_tensor.floor_()  # binarize
        output = hidden_state.div(keep_prob) * random_tensor
        return output

class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
    state back into h hidden dimension.
    """

    def __init__(self, config, is_expert=False):
        super(ParallelMLP, self).__init__()
        args = get_args()

        self.add_bias = config.add_bias_linear

        ffn_hidden_size = config.ffn_hidden_size
        if config.gated_linear_unit:
            ffn_hidden_size *= 2

        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
            config.hidden_size,
            ffn_hidden_size,
            config=config,
            init_method=config.init_method,
            bias=self.add_bias,
            gather_output=False,
            skip_bias_add=True,
            is_expert=is_expert,
        )

        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
        elif args.swiglu:
136
            @torch.compile(mode="max-autotune-no-cudagraphs")
silencealiang's avatar
silencealiang committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu

        # Project back to h.
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
            config.ffn_hidden_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
            bias=self.add_bias,
            skip_bias_add=True,
            input_is_parallel=True,
            is_expert=is_expert,
        )

    def forward(self, hidden_states):

        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)

        if self.bias_gelu_fusion:
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            if bias_parallel is not None:
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias

def sinkhorn(cost, tol=0.0001):
    cost = torch.exp(cost)
    d0 = torch.ones(cost.size(0), device=cost.device, dtype=cost.dtype)
    d1 = torch.ones(cost.size(1), device=cost.device, dtype=cost.dtype)

    eps = 0.00000001
    error = 1e9
    d1_old = d1
    while error > tol:
        d0 = (1/d0.size(0))*1/(torch.sum(d1*cost,1) + eps)
        d1 = (1/d1.size(0))*1/(torch.sum(d0.unsqueeze(1)*cost,0)+eps)
        error = torch.mean(torch.abs(d1_old-d1))
        d1_old = d1
    return d1*cost*d0.unsqueeze(1)


def get_router_linear_layer(config):
    args = get_args()
    router = torch.nn.Linear(args.hidden_size, args.num_experts, bias=False)
    with get_cuda_rng_tracker().fork(get_data_parallel_rng_tracker_name()):
        config.init_method(router.weight)
    setattr(router.weight, 'sequence_parallel',config.sequence_parallel)
    return router


class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
    def __init__(self, config):
        super(SwitchMLP, self).__init__()
        args = get_args()
        self.router = get_router_linear_layer(config)
        self.expert_parallel_size = mpu.get_expert_model_parallel_world_size()
        self.sequence_parallel = config.sequence_parallel
        self.add_bias = config.add_bias_linear

        assert args.num_experts % self.expert_parallel_size == 0
        self.num_local_experts = args.num_experts // self.expert_parallel_size
        local_expert_indices_offset = mpu.get_expert_model_parallel_rank() * self.num_local_experts
        self.local_expert_indices = [local_expert_indices_offset + i for i in range(self.num_local_experts)]

        self.local_experts = torch.nn.ModuleList()
        for i in range(self.num_local_experts):
            self.local_experts.append(ParallelMLP(config, is_expert=True))

        self.tp_ep_group = get_expert_tensor_and_model_parallel_group()

    def gather_indices(self, local_indices):
        """ Gather tensors and concatinate along the first dimension."""
        world_size = torch.distributed.get_world_size(group=self.tp_ep_group)
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return local_indices

        dim_size = list(local_indices.size())
        dim_size[0] = dim_size[0] * world_size

        # TODO pre allocate memory
        output = torch.empty(dim_size, dtype=local_indices.dtype,
                             device=torch.cuda.current_device())
        torch.distributed._all_gather_base(
            output, local_indices.contiguous(), group=self.tp_ep_group
        )
        return output

    def forward(self, hidden_states):
        # hidden_states: [b, s, h]
        args = get_args()
        s = hidden_states.size(0)
        b = hidden_states.size(1)
        h = hidden_states.size(2)
        route = self.router(hidden_states).view(-1, args.num_experts)

        # TODO (rprenger) Right now we're just using the sinkhorn algorithm
        # for load balancing. There should be an option to do no load balancing
        # and the algorithm and parametets should be further tested
        if self.training:
            with torch.no_grad():
                sinkroute = sinkhorn(route.detach().to(dtype=torch.float32))
                _, max_ind = torch.max(sinkroute, dim=1)
            route = torch.sigmoid(route)
            max_prob = route[torch.arange(route.size(0)), max_ind]
        else:
            route = torch.sigmoid(route)
            max_prob, max_ind = torch.max(route, dim=1)

        max_prob = torch.unsqueeze(max_prob, 1)
        hidden_states = hidden_states.view(-1, hidden_states.size(2))

        # TODO (rprenger) TODO this could be made easier to read
        # Converting [s, b, h] to [s*b, h].
        # Each vector could be routed differently
        if self.sequence_parallel or (self.expert_parallel_size > 1):
            global_hidden_states = \
                gather_from_sequence_parallel_region(hidden_states, group=self.tp_ep_group)
            global_indices = self.gather_indices(max_ind)
        else:
            global_hidden_states = hidden_states
            global_indices = max_ind

        output_total = torch.zeros_like(global_hidden_states)
        if self.add_bias:
            output_bias_total = torch.zeros_like(global_hidden_states)

        for expert_num, expert in enumerate(self.local_experts):
            local_expert_index = self.local_expert_indices[expert_num]
            local_indices = (global_indices == local_expert_index).nonzero()
            hidden = global_hidden_states[local_indices, :]
            output, output_bias = expert(hidden)
            output_total[local_indices, :] = output
            if self.add_bias:
                output_bias = output_bias.expand_as(output)
                output_bias_total[local_indices, :] = output_bias

        if self.sequence_parallel or (self.expert_parallel_size > 1):
            output_total = \
                reduce_scatter_to_sequence_parallel_region(output_total, group=self.tp_ep_group)
            if self.add_bias:
                output_bias_total = \
                    reduce_scatter_to_sequence_parallel_region(output_bias_total, group=self.tp_ep_group)

                # bias is duplicated across tensor parallelism ranks;
                # reduce scatter reduces bias across tensor parallel_ranks
                output_bias_total = \
                    output_bias_total/mpu.get_tensor_model_parallel_world_size()

        output_total = output_total*max_prob
        output_total = output_total.view(s, b, h)
        if self.add_bias:
            output_bias_total = output_bias_total*max_prob
            output_bias_total = output_bias_total.view(s, b, h)
        else:
            output_bias_total = None

        return output_total, output_bias_total


class CoreAttention(MegatronModule):

    def __init__(self, layer_number, config,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        self.fp16 = config.fp16
        self.bf16 = config.bf16

        self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
        self.sequence_parallel = config.sequence_parallel

        projection_size = config.kv_channels * config.num_attention_heads

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
            projection_size, config.num_attention_heads)
        self.num_attention_heads_per_partition = core.utils.divide(
            config.num_attention_heads, world_size)

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            config.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(config.attention_dropout)

    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.reshape(output_size[2],
                                          output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting input tensor: [b * np, sq, sk]
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
            query_layer.dtype, "mpu")

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
            matmul_input_buffer,
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        if not self.sequence_parallel:
            with tensor_parallel.get_cuda_rng_tracker().fork():
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """

        assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q,k,v)))
        assert all((i.is_cuda for i in (q,k,v)))

        batch_size, seqlen_q = q.shape[0], q.shape[1]
        seqlen_k = k.shape[1]

        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32,
                                    device=q.device)

        if self.training:
            # during training q,k,v always have same seqlen
            assert seqlen_k == seqlen_q

            is_causal = self.causal
            cu_seqlens_k = cu_seqlens_q
            dropout_p = self.dropout_p
        else:
            # turn off FA causal mask after first inference autoregressive iteration
            # only on first autoregressive step q,k,v have same seqlen
            is_causal = seqlen_q == seqlen_k
            cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32,
                        device=q.device)
            dropout_p = 0

        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
            dropout_p,
            softmax_scale=self.softmax_scale, causal=is_causal
        )

        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


class ParallelAttention(MegatronModule):
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [s, b, h]
    and returns output of the same size.
    """

    def __init__(self, config, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
        args = get_args()
        self.layer_number = max(1, layer_number)
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
        self.params_dtype = config.params_dtype
        self.sequence_parallel = config.sequence_parallel
        self.config = config
        self.group_query_attention = args.group_query_attention
        self.num_query_groups = args.num_query_groups

        query_projection_size = config.kv_channels * config.num_attention_heads
        if self.group_query_attention:
            kv_projection_size = args.kv_channels * args.num_query_groups
        else:
            kv_projection_size = args.kv_channels * args.num_attention_heads

        self.use_flash_attn = args.use_flash_attn \
            and attention_type == AttnType.self_attn \
            and self.attn_mask_type == AttnMaskType.causal
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_attention_head = core.utils.divide(
            query_projection_size, config.num_attention_heads)
        self.num_attention_heads_per_partition = core.utils.divide(
            config.num_attention_heads, world_size)

        if self.group_query_attention:
            if args.num_query_groups % world_size != 0:
                raise NotImplementedError('Currently the num_query_groups should be '
                                          'a multiple of the tensor parallel size')
            self.num_query_groups_per_partition = core.utils.divide(
                        args.num_query_groups, world_size)
        else:
            self.num_query_groups_per_partition = self.num_attention_heads_per_partition

        # Strided linear layer.
        if attention_type == AttnType.self_attn:
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                query_projection_size + 2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
                bias=args.add_bias_linear or args.add_qkv_bias,
                gather_output=False)
        else:
            assert attention_type == AttnType.cross_attn

            if self.group_query_attention:
                raise NotImplementedError("Grouped query attention not implemented for cross-attention.")
            assert query_projection_size == kv_projection_size

            self.query = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                query_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)

            self.key_value = tensor_parallel.ColumnParallelLinear(
                config.hidden_size,
                2 * kv_projection_size,
                config=config,
                init_method=config.init_method,
                bias=config.add_bias_linear,
                gather_output=False)

        self.core_attention = CoreAttention(self.layer_number, config,
                                            self.attn_mask_type)
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'

        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=config.attention_dropout
            )

        # Output.
        self.dense = tensor_parallel.RowParallelLinear(
            query_projection_size,
            config.hidden_size,
            config=config,
            init_method=config.output_layer_init_method,
            bias=args.add_bias_linear,
            input_is_parallel=True,
            skip_bias_add=True)

    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask,
                                        rotary_pos_emb=None):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

        q_pos_emb, k_pos_emb = (None, None) if rotary_pos_emb is None \
            else rotary_pos_emb

        hidden_states = tensor_parallel.checkpoint(
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask,
            q_pos_emb, k_pos_emb)

        return hidden_states

    def _allocate_memory(self, inference_max_sequence_len, batch_size, num_attention_heads):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            num_attention_heads,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, inference_params=None,
                rotary_pos_emb=None):
        # hidden_states: [sq, b, h]

        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
        is_first_step = False
        if inference_params:
            if self.layer_number not in inference_params.key_value_memory_dict:
                inf_max_seq_len = inference_params.max_sequence_length
                inf_max_batch_size = inference_params.max_batch_size
                inference_key_memory = self._allocate_memory(
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)
                inference_value_memory = self._allocate_memory(
                    inf_max_seq_len, inf_max_batch_size,
                    self.num_query_groups_per_partition)

                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
                is_first_step = True
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]

        # =====================
        # Query, Key, and Value
        # =====================
        if self.attention_type == AttnType.self_attn:

            # Attention heads [sq, b, h] --> [sq, b, ng * (np/ng + 2) * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, hp] --> [sq, b, ng, (np/ng + 2) * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + (
                self.num_query_groups_per_partition,
                (
                    (self.num_attention_heads_per_partition // self.num_query_groups_per_partition + 2)
                    * self.hidden_size_per_attention_head
                ),
            )
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, ng, (np/ng + 2) * hn] --> [sq, b, ng, np/ng * hn], [sq, b, ng, hn], [sq, b, ng, hn]
            (query_layer,
            key_layer,
            value_layer) = torch.split(
                mixed_x_layer,
                [
                    (
                        self.num_attention_heads_per_partition // self.num_query_groups_per_partition
                        * self.hidden_size_per_attention_head
                    ),
                    self.hidden_size_per_attention_head,
                    self.hidden_size_per_attention_head
                ],
                dim=3)

            # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn] -
715
            query_layer = query_layer.contiguous().view(query_layer.size(0), query_layer.size(1), -1, self.hidden_size_per_attention_head)
silencealiang's avatar
silencealiang committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
            value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)

        # ==================================
        # Adjust key and value for inference
        # ==================================

        # duplicate the pos_emb for self attention
        if rotary_pos_emb is not None:
            if isinstance(rotary_pos_emb, tuple):
                rotary_pos_emb = rotary_pos_emb
            else:
                rotary_pos_emb = ((rotary_pos_emb,) * 2)

        if inference_params:
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
            assert batch_end <= inference_key_memory.size(1)
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
            assert sequence_end <= inference_key_memory.size(0), ("Current sequence length is "
            "longer than expected maximum sequence length! Increase inference_max_seq_length.")
            # Copy key and values.
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
                :sequence_end, batch_start:batch_end, ...]
            value_layer = inference_value_memory[
                :sequence_end, batch_start:batch_end, ...]


            # adjust the key rotary positional embedding
            if rotary_pos_emb is not None:
                q_pos_emb, k_pos_emb = rotary_pos_emb
                # need to cross check this condition during inference
                # if not set_inference_key_value_memory:
                if not is_first_step:
                    # In inference, we compute one token at a time.
                    # Select the correct positional embedding
                    # (only the last token in the sequence)
                    q_pos_emb = q_pos_emb[sequence_end - 1 : sequence_end]
                else:
                    # In the first forward pass of inference,
                    # we use the entire provided prefix.
                    # q_pos_emb here has the rope embeddings of the entire
                    # prefix + to-be-generated output so
                    # we slice to just the prefix.
                    q_pos_emb = q_pos_emb[:sequence_end, :, :, :]
                k_pos_emb = k_pos_emb[:sequence_end, :, :, :]
                rotary_pos_emb = (q_pos_emb, k_pos_emb)

        # ==================================
        # core attention computation
        # ==================================

        # expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
        if self.num_attention_heads_per_partition // self.num_query_groups_per_partition > 1:
            key_layer = key_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )
            value_layer = value_layer.repeat_interleave(
                self.num_attention_heads_per_partition // self.num_query_groups_per_partition,
                dim = 2
            )

        # apply relative positional encoding (rotary embedding)
        if rotary_pos_emb is not None:
            q_pos_emb, k_pos_emb = rotary_pos_emb
            query_layer = apply_rotary_pos_emb(query_layer, q_pos_emb,self.config)
            key_layer = apply_rotary_pos_emb(key_layer, k_pos_emb,self.config)
            # TODO, can apply positional embedding to value_layer so it has
            # absolute positional embedding.
            # otherwise, only relative positional embedding takes effect
            # value_layer = apply_rotary_pos_emb(value_layer, k_pos_emb)

        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
        else:
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()

        # =================
        # Output. [sq, b, h]
        # =================

        output, bias = self.dense(context_layer)

        return output, bias


def bias_dropout_add(x, bias, residual, prob, training):
    # type: (Tensor, Optional[Tensor], Tensor, float, bool) -> Tensor
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@jit_fuser
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: Optional[torch.Tensor],
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
    return bias_dropout_add(x, bias, residual, prob, True)


@jit_fuser
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: Optional[torch.Tensor],
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
    return bias_dropout_add(x, bias, residual, prob, False)


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

    Transformer layer takes input with size [s, b, h] and returns an
    output of the same size.
    """

    def __init__(self, config,
                 layer_number, layer_type=LayerType.encoder,
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
        args = get_args()

        super(ParallelTransformerLayer, self).__init__()
        self.layer_number = layer_number
        self.layer_type = layer_type

        self.apply_residual_connection_post_norm \
            = config.apply_residual_connection_post_layernorm

        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection

        # Normalize the input data.
        self.input_norm = get_norm(config)

        # Self attention.
        self.self_attention = ParallelAttention(
            config,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
        self.hidden_dropout = config.hidden_dropout
        self.bias_dropout_fusion = config.bias_dropout_fusion
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None

        # Normalize the attention output
        self.post_attention_norm = get_norm(config)

        # Cross attention.
        if self.layer_type in (LayerType.decoder,
                               LayerType.retro_decoder,
                               LayerType.retro_decoder_with_retriever,
                               LayerType.retro_encoder):
            self.inter_attention = ParallelAttention(
                config,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Normalize the attention output.
            self.post_inter_attention_norm = get_norm(config)

        # MLP
        if args.num_experts is not None:
            self.mlp = SwitchMLP(config)
        else:
            self.mlp = ParallelMLP(config)

        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length

        # Retriever (bi-directional transformer with cross attention)
        if layer_type == LayerType.retro_decoder_with_retriever:
            self.retriever = ParallelTransformer(
                config=config,
                model_type=ModelType.retro_encoder,
                self_attn_mask_type=AttnMaskType.padding,
                pre_process=True,
                post_process=False,
            )
            self._retriever_key = 'retriever'
        else:
            self.retriever = None

    def default_decoder_cross_attention(self,
                                        encoder_output,
                                        enc_dec_attn_mask,
                                        norm_input,
                                        norm_output,
                                        bias_dropout_add_func):
        '''Cross attention for a standard encoder-decoder model.'''

        # Attention.
        attention_output, attention_bias = \
            self.inter_attention(norm_output,
                                 enc_dec_attn_mask,
                                 encoder_output=encoder_output)

        # Residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = norm_input

        if attention_bias is not None:
            attention_bias = attention_bias.expand_as(residual)

        # Bias-dropout-add.
        with self.bias_dropout_add_exec_handler():
            norm_input = bias_dropout_add_func(
                attention_output,
                attention_bias,
                residual,
                self.hidden_dropout)

        # Normalize.
        norm_output = self.post_inter_attention_norm(norm_input)

        return norm_input, norm_output

    def retro_encoder_cross_attention(self,
                                      retriever_output,
                                      norm_input,
                                      norm_output,
                                      bias_dropout_add_func):
        """Cross attention for Retro encoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

        ns, bs, d = norm_output.shape # [r, bs * l * k, d]

        # Divide sequence dimension into chunks.
        chunked_outputs = norm_output.reshape(self.retro_retrieved_length,
                                              -1,
                                              self.retro_num_neighbors,
                                              d)
        chunked_outputs_before_norm = \
            norm_input.reshape(self.retro_retrieved_length, -1,
                               self.retro_num_neighbors, d) # [r, bs*l, k, d]

        # Per-chunk attention.
        norm_inputs = []
        norm_outputs = []
        for k in range(self.retro_num_neighbors):

            # Attention.
            chunked_output = chunked_outputs[:,:,k].contiguous()
            attention_output, attention_bias = \
                self.inter_attention(
                    chunked_output, # Q (neighbor embedding)
                    None,
                    encoder_output=retriever_output) # K, V (hidden act)

            # Residual connection.
            if self.apply_residual_connection_post_norm:
                residual = chunked_output
            else:
                residual = chunked_outputs_before_norm[:,:,k]

            # Re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                norm_input = bias_dropout_add_func(
                    attention_output,
                    None if attention_bias is None else attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
                norm_inputs.append(norm_input)

            # Layer norm.
            norm_output = self.post_inter_attention_norm(norm_input)
            norm_outputs.append(norm_output)

        # Concatenate layer norms.
        # norm_input : [r, k * bs * l, d]
        # norm_output : [r, k * bs * l, d]
        norm_input = torch.stack(norm_inputs, dim=1).reshape(ns, bs, d)
        norm_output = torch.stack(norm_outputs, dim=1).reshape(ns, bs, d)

        return norm_input, norm_output

    def retro_decoder_cross_attention(self,
                                      retriever_input,
                                      retriever_output,
                                      retriever_attn_mask,
                                      norm_input,
                                      norm_output,
                                      inference_params,
                                      bias_dropout_add_func):
        """Cross attention for Retro decoder.

        Notation:
            ns : Sequence length.
            bs : Batch size.
            d  : Hidden size.
            l  : Number of chunks per sample (i.e., seq_length/chunk_length).
            m  : Number of tokens per chunk.
            k  : Number of neighbors.
            r  : Number of retrieved tokens (neighbors + continuation).
        """

        ns, bs, d = norm_output.shape
        l = int(np.ceil(ns / self.retro_chunk_length))

        # Retrieve neighbors.
        if self.layer_type == LayerType.retro_decoder_with_retriever:
            first_ns = ns % self.retro_chunk_length
            if first_ns > 0:
                first_chunk, rest_chunk = \
                    norm_output[:first_ns], norm_output[first_ns:]
                first_chunk = torch.nn.functional.pad(
                    first_chunk,
                    (0, 0, 0, 0, 0, self.retro_chunk_length - first_ns),
                    'constant',
                    0)
                chunked_output = \
                    torch.cat((first_chunk, rest_chunk), dim=0) # [l * m, bs, d]
            else:
                chunked_output = norm_output # [l * m, bs, d]
            chunked_output = chunked_output \
                .reshape(l, self.retro_chunk_length, bs, d) \
                .permute(1, 2, 0, 3) \
                .reshape(self.retro_chunk_length, bs * l, d) \
                .contiguous()

            # Get Encoder Output
            retriever_output = self.retriever(
                hidden_states=retriever_input,
                attention_mask=retriever_attn_mask,
                retriever_output=chunked_output,
                retriever_attn_mask=retriever_attn_mask,
                inference_params=inference_params) # [r, k * bs * l , d]
            retriever_output = retriever_output.reshape(
                self.retro_retrieved_length * self.retro_num_neighbors, bs * l, d) # [r * k, bs * l, d]

        # Chunks.
        pad = (ns - 1) % self.retro_chunk_length
        attending_chunks = norm_output[pad:]
        padded_chunks = torch.nn.functional.pad(
            attending_chunks,
            (0, 0, 0, 0, 0, self.retro_chunk_length - 1),
            'constant', 0)
        padded_chunked_output = padded_chunks \
            .reshape(l, self.retro_chunk_length, bs, d) \
            .permute(1, 2, 0, 3)
        padded_chunked_output = padded_chunked_output.reshape(
            self.retro_chunk_length, bs * l, d).contiguous()

        # Encoder output.
        attention_output, attention_bias = \
            self.inter_attention(padded_chunked_output,
                                 None,
                                 encoder_output=retriever_output)

        # Residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = norm_input

        # Re-enable torch grad to enable fused optimization.
        with torch.enable_grad():
            norm_input = bias_dropout_add_func(
                attention_output,
                None if attention_bias is None else attention_bias.expand_as(attention_output),
                torch.zeros_like(attention_output),
                self.hidden_dropout)
            norm_input = norm_input \
                .reshape(self.retro_chunk_length, bs, l, d) \
                .permute(2, 0, 1, 3) # [l, m, bs, d]
            norm_input = norm_input.reshape(self.retro_chunk_length * l, bs, d)
            norm_input = torch.nn.functional.pad(
                norm_input,
                (0, 0, 0, 0, pad, 0),
                'constant', 0)[:ns] # [ns, b, d]
            # TODO: better redesign with inference param
            args = get_args()
            norm_input = args.retro_attention_gate * norm_input + residual

        # Layer norm post the decoder attention
        norm_output = self.post_inter_attention_norm(norm_input)

        return retriever_output, norm_input, norm_output

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):

        # Update the params in case the retro param changes during inference
        # TODO: better redesign with inference param
        args = get_args()
        if args.retro_add_retriever:
            self.retro_num_neighbors = args.retro_num_neighbors
            self.retro_chunk_length = args.retro_chunk_length
            self.retro_retrieved_length = \
                args.retro_num_retrieved_chunks * args.retro_chunk_length

        # hidden_states: [s, b, h]

        # Layer norm at the beginning of the transformer layer.
        norm_output = self.input_norm(hidden_states)

        # Self attention.
        attention_output, attention_bias = \
            self.self_attention(
                norm_output,
                attention_mask,
                inference_params=inference_params,
                rotary_pos_emb=rotary_pos_emb)

        # Residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = hidden_states

        if self.drop_path is None:
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
            else:
                bias_dropout_add_func = get_bias_dropout_add(self.training)

            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                norm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias,
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            norm_input = residual + self.drop_path(out)

        # Layer norm post the self attention.
        norm_output = self.post_attention_norm(norm_input)

        # Cross attention.
        if self.layer_type == LayerType.encoder:
            pass
        elif self.layer_type == LayerType.decoder:
            norm_input, norm_output = \
                self.default_decoder_cross_attention(
                    encoder_output,
                    enc_dec_attn_mask,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type == LayerType.retro_encoder:
            norm_input, norm_output = \
                self.retro_encoder_cross_attention(
                    retriever_output,
                    norm_input,
                    norm_output,
                    bias_dropout_add_func)
        elif self.layer_type in (LayerType.retro_decoder,
                                 LayerType.retro_decoder_with_retriever):
            retriever_output, norm_input, norm_output = \
                self.retro_decoder_cross_attention(
                    retriever_input,
                    retriever_output,
                    retriever_attn_mask,
                    norm_input,
                    norm_output,
                    inference_params,
                    bias_dropout_add_func)
        else:
            raise Exception("Unsupported layer type, '%s'." %
                            self.layer_type.name)

        # MLP.
        mlp_output, mlp_bias = self.mlp(norm_output)

        # Second residual connection.
        if self.apply_residual_connection_post_norm:
            residual = norm_output
        else:
            residual = norm_input

        if self.drop_path is None:
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
            with self.bias_dropout_add_exec_handler():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias,
                    residual,
                    self.hidden_dropout)

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)

        else:
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)

        if self.layer_type == LayerType.retro_decoder_with_retriever:
            return output, retriever_output
        else:
            return output


class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

    The sole purpose of this layer is for when a standalone embedding layer
    is used (i.e., args.account_for_embedding_in_pipeline_split == True). In this case,
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


def _get_num_layers(args, model_type, is_decoder=False):
    """Compute the number of transformer layers resident on the current rank."""
    is_encoder_and_decoder_model = (model_type == ModelType.encoder_and_decoder)
    if model_type == ModelType.retro_encoder:
        num_layers = args.retro_encoder_layers
    elif mpu.get_pipeline_model_parallel_world_size() > 1:
        assert not is_encoder_and_decoder_model, "This is no longer supported."
        assert args.num_layers == args.encoder_num_layers
        assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
            'num_layers must be divisible by transformer_pipeline_model_parallel_size'

        # When a standalone embedding stage is used, all transformer layers
        # are divided among pipeline rank >= 1, while on pipeline rank 0,
        # ranks either contain the input embedding layer (virtual pp rank 0),
        # or no layers at all (virtual pp rank >= 1).
        num_layers = (
            0
            if args.account_for_embedding_in_pipeline_split
            and mpu.get_pipeline_model_parallel_rank() == 0 else
            args.num_layers // args.transformer_pipeline_model_parallel_size
        )
    else:
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
    return num_layers


def _get_layer_type(model_type, default_layer_type, retro_layer_numbers,
                    layer_number):
    args = get_args()
    if args.retro_add_retriever and layer_number in retro_layer_numbers:
        if model_type == ModelType.retro_decoder:
            return LayerType.retro_decoder_with_retriever \
                if layer_number == retro_layer_numbers[0] \
                   else LayerType.retro_decoder
        elif model_type == ModelType.retro_encoder:
            return LayerType.retro_encoder
        else:
            raise Exception("Unsupported model type, '%s'." % model_type)
    else:
        return default_layer_type


class ParallelTransformer(MegatronModule):
    """Transformer class."""

    def __init__(self, config,
                 model_type, layer_type=LayerType.encoder,
                 self_attn_mask_type=AttnMaskType.padding,
                 post_norm=True,
                 pre_process=True,
                 post_process=True,
                 drop_path_rate=0.0):
        super(ParallelTransformer, self).__init__()
        args = get_args()

        self.layer_type = layer_type
        self.model_type = model_type
        self.bf16 = config.bf16
        self.fp32_residual_connection = config.fp32_residual_connection
        self.post_norm = post_norm
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
        self.drop_path_rate = drop_path_rate
        self.transformer_impl = args.transformer_impl
        self.retro_add_retriever = args.retro_add_retriever

        # Store activation checkpoiting flag.
        self.recompute_granularity = config.recompute_granularity
        self.recompute_method = config.recompute_method
        self.recompute_num_layers = config.recompute_num_layers
        self.distribute_saved_activations = \
            config.distribute_saved_activations and not config.sequence_parallel

        self.sequence_parallel = config.sequence_parallel

        # Transformer Engine Init.
        self.transformer_engine_v_0_10 = False
        self.transformer_engine_v_0_11 = False
        self.transformer_engine_v_0_8 = False
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine

            if core.utils.is_te_min_version("0.8.0"):
                self.transformer_engine_v_0_8 = True
            if core.utils.is_te_min_version("0.10.0"):
                self.transformer_engine_v_0_10 = True
            if core.utils.is_te_min_version("0.11.0"):
                self.transformer_engine_v_0_11 = True

            assert not args.squared_relu, ("TransformerEngine does not support squared "
                                           "relu activation.")

        self.use_fp8 = args.fp8 is not None
        self.fp8_recipe = None
        self.fp8_group = None
        if self.use_fp8:
            assert args.transformer_impl == 'transformer_engine', \
                'transformer-engine required for fp8 training and inference'
            self.fp8_group = mpu.get_amax_reduction_group(tp_only_amax_red=config.tp_only_amax_red)
            if args.fp8 == "e4m3":
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8 == "hybrid":
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            else:
                raise ValueError("The DelayedScaling recipe only supports E4M3 and HYBRID formats.")
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = config.recompute_granularity == 'selective'

        # Number of layers.
        self.num_layers = _get_num_layers(args, model_type,
                                          layer_type==LayerType.decoder)

        self.drop_path_rates = [
            rate.item() for rate in
            torch.linspace(0, self.drop_path_rate, config.num_layers)]

        self.retro_layer_numbers = None
        if model_type == ModelType.retro_decoder:
            retro_layer_start = 6 if config.num_layers <= 15 else 9
            self.retro_layer_numbers = \
                np.arange(retro_layer_start, args.num_layers + 1, 3).tolist()
        if model_type == ModelType.retro_encoder:
            self.retro_layer_numbers = [1]

        # Transformer layers.
        if args.retro_add_retriever:
            assert self.recompute_granularity != 'full', \
                "Full recompute not supported for Retro."
            assert args.transformer_impl == 'local', \
                "Transformer engine does not support Retro layers."
        def build_layer(layer_number):
            if args.transformer_impl == 'local':
                current_layer_type = _get_layer_type(
                    model_type, layer_type, self.retro_layer_numbers,
                    layer_number)
                return ParallelTransformerLayer(
                    config,
                    layer_number,
                    layer_type=current_layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                # This argument is only available from TE v0.10 onwards.
                extra_transformer_engine_kwargs = {}
                if self.transformer_engine_v_0_8:
                    extra_transformer_engine_kwargs["bias"] = args.add_bias_linear
                if self.transformer_engine_v_0_10:
                    extra_transformer_engine_kwargs["activation"] = "swiglu" if args.swiglu else "gelu"
                if self.transformer_engine_v_0_11:
                    extra_transformer_engine_kwargs["normalization"] = args.normalization
                assert config.attention_softmax_in_fp32, "TransformerEngine only supports softmax compute in FP32."
                assert (
                    (bool(int(os.getenv("NVTE_APPLY_QK_LAYER_SCALING", "0"))) and args.fp16) == config.apply_query_key_layer_scaling
                ), ("Unsupported config for apply_query_key_layer_scaling in TransformerEngine. If --apply-query-key-layer-scaling is "
                    "provided, set env-var NVTE_APPLY_QK_LAYER_SCALING=1 and you must be using fp16.")
                return transformer_engine.pytorch.TransformerLayer(
                    config.hidden_size,
                    config.ffn_hidden_size,
                    config.num_attention_heads,
                    layernorm_epsilon=config.layernorm_epsilon,
                    hidden_dropout=config.hidden_dropout,
                    attention_dropout=config.attention_dropout,
                    init_method=config.init_method,
                    output_layer_init_method=config.output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=config.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group() if mpu.is_initialized() else None,
                    tp_size=mpu.get_tensor_model_parallel_world_size(),
                    get_rng_state_tracker=get_cuda_rng_tracker
                    if get_cuda_rng_tracker().is_initialized()
                    else None,
                    fuse_wgrad_accumulation=config.gradient_accumulation_fusion,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=config.sequence_parallel,
                    params_dtype=config.params_dtype,
                    apply_residual_connection_post_layernorm=config.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True,
                    **extra_transformer_engine_kwargs)

        if config.virtual_pipeline_model_parallel_size is not None:
            assert config.num_layers % config.virtual_pipeline_model_parallel_size == 0, \
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
            assert args.model_type != ModelType.encoder_and_decoder
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
            self.num_layers = self.num_layers // config.virtual_pipeline_model_parallel_size
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
                config.num_layers // config.virtual_pipeline_model_parallel_size) + \
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
            # Each stage gets a contiguous set of layers.
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers

        if self.num_layers == 0:
            # When a standalone embedding stage is used (e.g.,
            # args.account_for_embedding_in_pipeline_split == True), virtual pipeline ranks
            # on pipeline rank 0 will have zero transformer layers assigned to
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])

            # Update dropout rate for Retro encoder.
            if model_type == ModelType.retro_encoder:
                for layer in self.layers:
                    if layer.self_attention.use_flash_attn:
                        layer.self_attention.core_attention_flash.dropout_p = \
                            torch.nn.Dropout(args.retro_encoder_attention_dropout)
                    else:
                        layer.self_attention.core_attention.attention_dropout.p =\
                            args.retro_encoder_attention_dropout
                    layer.hidden_dropout = args.retro_encoder_hidden_dropout

        if self.post_process and self.post_norm:
            # Final layer norm before output.
            self.final_norm = get_norm(config)

    def _get_layer(self, layer_number):
        return self.layers[layer_number]

    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask,
                              rotary_pos_emb, is_first_microbatch):
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*args, **kwargs):
                x_, *args = args
                for index in range(start, end):
                    layer = self._get_layer(index)
                    x_ = layer(x_, *args, **kwargs)
                return x_
            return custom_forward

        te_forward_kwargs = {}
        if self.transformer_impl == 'transformer_engine':
            te_forward_kwargs['is_first_microbatch'] = is_first_microbatch
            if self.transformer_engine_v_0_10:
                te_forward_kwargs['rotary_pos_emb'] = rotary_pos_emb

        if self.recompute_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and
            # checkpoint the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output,
                        enc_dec_attn_mask, **te_forward_kwargs)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask,
                        encoder_output, enc_dec_attn_mask,
                        None, None, None, None, rotary_pos_emb)

                l += self.recompute_num_layers

        elif self.recompute_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.recompute_num_layers:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
                else:
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output,
                            enc_dec_attn_mask, **te_forward_kwargs)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask,
                            encoder_output, enc_dec_attn_mask,
                            None, None, None, None, rotary_pos_emb)
        else:
            raise ValueError("Invalid activation recompute method.")

        return hidden_states

    def set_input_tensor(self, input_tensor):
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
        self.input_tensor = input_tensor

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                retriever_input=None,
                retriever_output=None,
                retriever_attn_mask=None,
                inference_params=None,
                rotary_pos_emb=None):
        # hidden_states: [s, b, h]

        # Checks.
        if inference_params:
            assert self.recompute_granularity is None, \
                'inference does not work with activation checkpointing'

        if not self.pre_process:
            # See set_input_tensor()
            hidden_states = self.input_tensor

        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        #
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = core.utils.make_viewless_tensor(
            hidden_states,
            requires_grad=True,
            keep_graph=True,
        )

        # RNG context.
        if self.sequence_parallel:
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
        else:
            rng_context = nullcontext()

        # Forward layers.
        with rng_context:
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               rotary_pos_emb,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention
                        if self.transformer_engine_v_0_10:
                            forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                    else:
                        forward_kwargs['rotary_pos_emb'] = rotary_pos_emb
                        forward_kwargs['retriever_input'] = retriever_input
                        forward_kwargs['retriever_output'] = retriever_output
                        forward_kwargs['retriever_attn_mask'] = retriever_attn_mask

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                        # First Retro decoder layer returns both hidden_states
                        # and retriever_output. Make retriever_output available
                        # to subsequence Retro layers.
                        if isinstance(hidden_states, tuple):
                            assert len(hidden_states) == 2
                            hidden_states, retriever_output = hidden_states
                            forward_kwargs["retriever_output"] = retriever_output

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1

        # Final layer norm.
        if self.post_process and self.post_norm:
            hidden_states = self.final_norm(hidden_states)

        return hidden_states

    def load_state_dict(self, state_dict, strict=True):
        """Customize load."""

        # Handle renaming layernorm -> norm in component names
        state_dict_ = {}
        for key in state_dict.keys():
            # Bypass TransformerEngine module parameters.
            if "layernorm_qkv" in key or "layernorm_mlp" in key:
                state_dict_[key] = state_dict[key]
                continue
            newkey = key.replace("layernorm", "norm")
            state_dict_[newkey] = state_dict[key]

        super().load_state_dict(state_dict_, strict)