dataset_utils.py 14.4 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, and NVIDIA.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
18
19
20


import collections
import numpy as np


21
22
23
24
25
26
def compile_helper():
    """Compile helper function ar runtime. Make sure this
    is invoked on a single process."""
    import os
    import subprocess
    path = os.path.abspath(os.path.dirname(__file__))
27
28
29
30
31
    ret = subprocess.run(['make', '-C', path])
    if ret.returncode != 0:
        print("Making C++ dataset helpers module failed, exiting.")
        import sys
        sys.exit(1)
32
33


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
34
35
36
def build_training_sample(sample,
                          target_seq_length, max_seq_length,
                          vocab_id_list, vocab_id_to_token_dict,
37
                          cls_id, sep_id, mask_id, pad_id,
38
                          masked_lm_prob, np_rng):
39
40
41
42
    """Biuld training sample.

    Arguments:
        sample: A list of sentences in which each sentence is a list token ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
43
44
45
        target_seq_length: Desired sequence length.
        max_seq_length: Maximum length of the sequence. All values are padded to
            this length.
46
47
48
49
50
51
52
        vocab_id_list: List of vocabulary ids. Used to pick a random id.
        vocab_id_to_token_dict: A dictionary from vocab ids to text tokens.
        cls_id: Start of example id.
        sep_id: Separator id.
        mask_id: Mask token id.
        pad_id: Padding token id.
        masked_lm_prob: Probability to mask tokens.
53
54
        np_rng: Random number genenrator. Note that this rng state should be
              numpy and not python since python randint is inclusive for
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55
              the opper bound whereas the numpy one is exclusive.
56
57
58
59
    """

    # We assume that we have at least two sentences in the sample
    assert len(sample) > 1
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
60
    assert target_seq_length <= max_seq_length
61
62

    # Divide sample into two segments (A and B).
63
    tokens_a, tokens_b, is_next_random = get_a_and_b_segments(sample, np_rng)
64

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
65
    # Truncate to `target_sequence_length`.
66
    max_num_tokens = target_seq_length
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
67
    truncated = truncate_segments(tokens_a, tokens_b, len(tokens_a),
68
                                  len(tokens_b), max_num_tokens, np_rng)
69
70
71
72
73
74
75
76
77

    # Build tokens and toketypes.
    tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
                                                      cls_id, sep_id)

    # Masking.
    max_predictions_per_seq = masked_lm_prob * max_num_tokens
    (tokens, masked_positions, masked_labels, _) = create_masked_lm_predictions(
        tokens, vocab_id_list, vocab_id_to_token_dict, masked_lm_prob,
78
        cls_id, sep_id, mask_id, max_predictions_per_seq, np_rng)
79
80

    # Padding.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
81
    tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np \
82
83
84
85
86
87
        = pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                                   masked_labels, pad_id, max_seq_length)

    train_sample = {
        'text': tokens_np,
        'types': tokentypes_np,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
88
        'labels': labels_np,
89
        'is_random': int(is_next_random),
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
90
91
        'loss_mask': loss_mask_np,
        'padding_mask': padding_mask_np,
92
        'truncated': int(truncated)}
93
94
95
    return train_sample


96
def get_a_and_b_segments(sample, np_rng):
97
98
99
100
101
102
103
104
105
106
107
    """Divide sample into a and b segments."""

    # Number of sentences in the sample.
    n_sentences = len(sample)
    # Make sure we always have two sentences.
    assert n_sentences > 1, 'make sure each sample has at least two sentences.'

    # First part:
    # `a_end` is how many sentences go into the `A`.
    a_end = 1
    if n_sentences >= 3:
108
109
        # Note that randin in numpy is exclusive.
        a_end = np_rng.randint(1, n_sentences)
110
111
112
113
114
115
116
117
118
119
120
    tokens_a = []
    for j in range(a_end):
        tokens_a.extend(sample[j])

    # Second part:
    tokens_b = []
    for j in range(a_end, n_sentences):
        tokens_b.extend(sample[j])

    # Random next:
    is_next_random = False
121
    if np_rng.random() < 0.5:
122
123
124
125
126
127
        is_next_random = True
        tokens_a, tokens_b = tokens_b, tokens_a

    return tokens_a, tokens_b, is_next_random


128
def truncate_segments(tokens_a, tokens_b, len_a, len_b, max_num_tokens, np_rng):
129
    """Truncates a pair of sequences to a maximum sequence length."""
130
    #print(len_a, len_b, max_num_tokens)
131
132
    assert len_a > 0
    assert len_b > 0
133
134
135
    if len_a + len_b <= max_num_tokens:
        return False
    while len_a + len_b > max_num_tokens:
136
137
138
139
140
141
        if len_a > len_b:
            len_a -= 1
            tokens = tokens_a
        else:
            len_b -= 1
            tokens = tokens_b
142
        if np_rng.random() < 0.5:
143
144
145
            del tokens[0]
        else:
            tokens.pop()
146
    return True
147

148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def create_tokens_and_tokentypes(tokens_a, tokens_b, cls_id, sep_id):
    """Merge segments A and B, add [CLS] and [SEP] and build tokentypes."""

    tokens = []
    tokentypes = []
    # [CLS].
    tokens.append(cls_id)
    tokentypes.append(0)
    # Segment A.
    for token in tokens_a:
        tokens.append(token)
        tokentypes.append(0)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(0)
    # Segment B.
    for token in tokens_b:
        tokens.append(token)
        tokentypes.append(1)
    # [SEP].
    tokens.append(sep_id)
    tokentypes.append(1)

    return tokens, tokentypes


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])


def is_start_piece(piece):
180
181
182
183
184
185
    """Check if the current word piece is the starting piece (BERT)."""
    # When a word has been split into
    # WordPieces, the first token does not have any marker and any subsequence
    # tokens are prefixed with ##. So whenever we see the ## token, we
    # append it to the previous set of word indexes.
    return not piece.startswith("##")
186
187
188
189
190
191
192


def create_masked_lm_predictions(tokens,
                                 vocab_id_list, vocab_id_to_token_dict,
                                 masked_lm_prob,
                                 cls_id, sep_id, mask_id,
                                 max_predictions_per_seq,
193
                                 np_rng,
194
195
196
197
                                 max_ngrams=3,
                                 do_whole_word_mask=True,
                                 favor_longer_ngram=False,
                                 do_permutation=False):
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    """Creates the predictions for the masked LM objective.
    Note: Tokens here are vocab ids and not text tokens."""

    cand_indexes = []
    # Note(mingdachen): We create a list for recording if the piece is
    # the starting piece of current token, where 1 means true, so that
    # on-the-fly whole word masking is possible.
    token_boundary = [0] * len(tokens)

    for (i, token) in enumerate(tokens):
        if token == cls_id or token == sep_id:
            token_boundary[i] = 1
            continue
        # Whole Word Masking means that if we mask all of the wordpieces
        # corresponding to an original word.
        #
        # Note that Whole Word Masking does *not* change the training code
        # at all -- we still predict each WordPiece independently, softmaxed
        # over the entire vocabulary.
        if (do_whole_word_mask and len(cand_indexes) >= 1 and
                not is_start_piece(vocab_id_to_token_dict[token])):
            cand_indexes[-1].append(i)
220
        else:
221
222
223
            cand_indexes.append([i])
            if is_start_piece(vocab_id_to_token_dict[token]):
                token_boundary[i] = 1
224

225
    output_tokens = list(tokens)
226

227
228
    masked_lm_positions = []
    masked_lm_labels = []
229

230
231
232
    if masked_lm_prob == 0:
        return (output_tokens, masked_lm_positions,
                masked_lm_labels, token_boundary)
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    num_to_predict = min(max_predictions_per_seq,
                         max(1, int(round(len(tokens) * masked_lm_prob))))

    # Note(mingdachen):
    # By default, we set the probilities to favor shorter ngram sequences.
    ngrams = np.arange(1, max_ngrams + 1, dtype=np.int64)
    pvals = 1. / np.arange(1, max_ngrams + 1)
    pvals /= pvals.sum(keepdims=True)

    if favor_longer_ngram:
        pvals = pvals[::-1]

    ngram_indexes = []
    for idx in range(len(cand_indexes)):
        ngram_index = []
        for n in ngrams:
            ngram_index.append(cand_indexes[idx:idx + n])
        ngram_indexes.append(ngram_index)
252

253
    np_rng.shuffle(ngram_indexes)
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    masked_lms = []
    covered_indexes = set()
    for cand_index_set in ngram_indexes:
        if len(masked_lms) >= num_to_predict:
            break
        if not cand_index_set:
            continue
        # Note(mingdachen):
        # Skip current piece if they are covered in lm masking or previous ngrams.
        for index_set in cand_index_set[0]:
            for index in index_set:
                if index in covered_indexes:
                    continue

        n = np_rng.choice(ngrams[:len(cand_index_set)],
                          p=pvals[:len(cand_index_set)] /
                          pvals[:len(cand_index_set)].sum(keepdims=True))
272
273
        index_set = sum(cand_index_set[n - 1], [])
        n -= 1
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        # Note(mingdachen):
        # Repeatedly looking for a candidate that does not exceed the
        # maximum number of predictions by trying shorter ngrams.
        while len(masked_lms) + len(index_set) > num_to_predict:
            if n == 0:
                break
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1
        # If adding a whole-word mask would exceed the maximum number of
        # predictions, then just skip this candidate.
        if len(masked_lms) + len(index_set) > num_to_predict:
            continue
        is_any_index_covered = False
        for index in index_set:
            if index in covered_indexes:
                is_any_index_covered = True
                break
        if is_any_index_covered:
            continue
        for index in index_set:
            covered_indexes.add(index)

            masked_token = None
            # 80% of the time, replace with [MASK]
            if np_rng.random() < 0.8:
                masked_token = mask_id
            else:
                # 10% of the time, keep original
                if np_rng.random() < 0.5:
                    masked_token = tokens[index]
                # 10% of the time, replace with random word
                else:
                    masked_token = vocab_id_list[np_rng.randint(0, len(vocab_id_list))]

            output_tokens[index] = masked_token

            masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
    assert len(masked_lms) <= num_to_predict

    np_rng.shuffle(ngram_indexes)

    select_indexes = set()
    if do_permutation:
        for cand_index_set in ngram_indexes:
            if len(select_indexes) >= num_to_predict:
                break
            if not cand_index_set:
                continue
            # Note(mingdachen):
            # Skip current piece if they are covered in lm masking or previous ngrams.
            for index_set in cand_index_set[0]:
                for index in index_set:
                    if index in covered_indexes or index in select_indexes:
                        continue

            n = np.random.choice(ngrams[:len(cand_index_set)],
                                 p=pvals[:len(cand_index_set)] /
                                 pvals[:len(cand_index_set)].sum(keepdims=True))
            index_set = sum(cand_index_set[n - 1], [])
            n -= 1

            while len(select_indexes) + len(index_set) > num_to_predict:
                if n == 0:
                    break
                index_set = sum(cand_index_set[n - 1], [])
                n -= 1
            # If adding a whole-word mask would exceed the maximum number of
            # predictions, then just skip this candidate.
            if len(select_indexes) + len(index_set) > num_to_predict:
                continue
            is_any_index_covered = False
            for index in index_set:
                if index in covered_indexes or index in select_indexes:
                    is_any_index_covered = True
                    break
            if is_any_index_covered:
                continue
            for index in index_set:
                select_indexes.add(index)
        assert len(select_indexes) <= num_to_predict

        select_indexes = sorted(select_indexes)
        permute_indexes = list(select_indexes)
        np_rng.shuffle(permute_indexes)
        orig_token = list(output_tokens)

        for src_i, tgt_i in zip(select_indexes, permute_indexes):
            output_tokens[src_i] = orig_token[tgt_i]
            masked_lms.append(MaskedLmInstance(index=src_i, label=orig_token[src_i]))

    masked_lms = sorted(masked_lms, key=lambda x: x.index)

    for p in masked_lms:
        masked_lm_positions.append(p.index)
        masked_lm_labels.append(p.label)
    return (output_tokens, masked_lm_positions, masked_lm_labels, token_boundary)
370
371
372
373
374
375
376
377
378
379
380
381
382
383


def pad_and_convert_to_numpy(tokens, tokentypes, masked_positions,
                             masked_labels, pad_id, max_seq_length):
    """Pad sequences and convert them to numpy."""

    # Some checks.
    num_tokens = len(tokens)
    padding_length = max_seq_length - num_tokens
    assert padding_length >= 0
    assert len(tokentypes) == num_tokens
    assert len(masked_positions) == len(masked_labels)

    # Tokens and token types.
384
    filler = [pad_id] * padding_length
385
386
387
388
    tokens_np = np.array(tokens + filler, dtype=np.int64)
    tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)

    # Padding mask.
389
    padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
                               dtype=np.int64)
391
392
393
394
395
396
397
398
399
400
401

    # Lables and loss mask.
    labels = [-1] * max_seq_length
    loss_mask = [0] * max_seq_length
    for i in range(len(masked_positions)):
        assert masked_positions[i] < num_tokens
        labels[masked_positions[i]] = masked_labels[i]
        loss_mask[masked_positions[i]] = 1
    labels_np = np.array(labels, dtype=np.int64)
    loss_mask_np = np.array(loss_mask, dtype=np.int64)

402
    return tokens_np, tokentypes_np, labels_np, padding_mask_np, loss_mask_np