pretrain_bert_ict.py 5.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain BERT for Inverse Cloze Task"""

import torch
import torch.nn.functional as F

from configure_data import configure_data
from megatron import mpu
23
from megatron.model import ICTBertModel
24
25
26
27
28
from megatron.utils import print_rank_0
from megatron.utils import reduce_losses
from megatron.utils import vocab_size_with_padding
from megatron.training import run

Neel Kant's avatar
Neel Kant committed
29
num_batches = 0
30
31
32
33

def model_provider(args):
    """Build the model."""

34
    print_rank_0('building BERT models ...')
35

36
    model = ICTBertModel(
37
38
39
40
41
42
43
44
45
        num_layers=args.num_layers,
        vocab_size=args.vocab_size,
        hidden_size=args.hidden_size,
        num_attention_heads=args.num_attention_heads,
        embedding_dropout_prob=args.hidden_dropout,
        attention_dropout_prob=args.attention_dropout,
        output_dropout_prob=args.hidden_dropout,
        max_sequence_length=args.max_position_embeddings,
        checkpoint_activations=args.checkpoint_activations,
46
        ict_head_size=128,
47
48
49
50
51
52
53
54
55
56
57
58
59
        checkpoint_num_layers=args.checkpoint_num_layers,
        layernorm_epsilon=args.layernorm_epsilon,
        num_tokentypes=args.tokentype_size,
        parallel_output=True,
        apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
        attention_softmax_in_fp32=args.attention_softmax_in_fp32)

    return model


def get_batch(data_iterator, timers):

    # Items and their type.
60
61
    keys = ['input_text', 'input_types', 'input_pad_mask',
            'context_text', 'context_types', 'context_pad_mask']
62
63
64
65
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
66
    if data_iterator is None:
67
        data = None
68
69
70
    else:
        data = next(data_iterator)

71
72
73
74
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
75
76
77
78
79
80
    input_tokens = data_b['input_text'].long()
    input_types = data_b['input_types'].long()
    input_pad_mask = data_b['input_pad_mask'].long()
    context_tokens = data_b['context_text'].long()
    context_types = data_b['context_types'].long()
    context_pad_mask = data_b['context_pad_mask'].long()
81

Neel Kant's avatar
Neel Kant committed
82
83
84
    global num_batches
    print("got batch {}".format(num_batches))

85
86
    return input_tokens, input_types, input_pad_mask,\
           context_tokens, context_types, context_pad_mask
87
88
89
90
91
92
93


def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
94
95
    input_tokens, input_types, input_pad_mask,\
    context_tokens, context_types, context_pad_mask = get_batch(data_iterator, timers)
96
97
98
    timers('batch generator').stop()

    # Forward model.
99
100
    retrieval_scores = model(input_tokens, 1 - input_pad_mask, input_types,
                             context_tokens, 1 - context_pad_mask, context_types)
Neel Kant's avatar
Neel Kant committed
101
    print("ran model to get retrieval scores")
102

Neel Kant's avatar
Neel Kant committed
103
104
105
    softmaxed = F.softmax(retrieval_scores, dim=0)
    retrieval_loss = F.cross_entropy(softmaxed, torch.arange(softmaxed.shape[0]).cuda())
    print(type(retrieval_loss))
106

107
    reduced_losses = reduce_losses([retrieval_loss])
108

Neel Kant's avatar
Neel Kant committed
109
110
111
112
113
    global num_batches
    print("did forward step {}".format(num_batches))
    num_batches += 1

    print(retrieval_loss, {'retrieval loss': reduced_losses[0]})
114
    return retrieval_loss, {'retrieval loss': reduced_losses[0]}
115
116
117
118
119
120
121
122
123
124
125
126
127


def get_train_val_test_data(args):
    """Load the data on rank zero and boradcast number of tokens to all GPUS."""

    (train_data, val_data, test_data) = (None, None, None)

    # Data loader only on rank 0 of each model parallel group.
    if mpu.get_model_parallel_rank() == 0:
        if (args.data_loader == 'raw'
                or args.data_loader == 'lazy'
                or args.data_loader == 'tfrecords'):
            data_config = configure_data()
128
            ds_type = 'BERT_ict'
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            data_config.set_defaults(data_set_type=ds_type, transpose=False)
            (train_data, val_data, test_data), tokenizer = data_config.apply(args)
            num_tokens = vocab_size_with_padding(tokenizer.num_tokens, args)
            # Need to broadcast num_tokens and num_type_tokens.
            token_counts = torch.cuda.LongTensor([num_tokens,
                                                  tokenizer.num_type_tokens,
                                                  int(args.do_train),
                                                  int(args.do_valid),
                                                  int(args.do_test)])
        else:
            print("Unsupported data loader for BERT.")
            exit(1)
    else:
        token_counts = torch.cuda.LongTensor([0, 0, 0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(token_counts,
                                mpu.get_model_parallel_src_rank(),
                                group=mpu.get_model_parallel_group())
    num_tokens = token_counts[0].item()
    num_type_tokens = token_counts[1].item()
    args.do_train = token_counts[2].item()
    args.do_valid = token_counts[3].item()
    args.do_test = token_counts[4].item()

    args.vocab_size = num_tokens
    args.tokentype_size = num_type_tokens

    return train_data, val_data, test_data


if __name__ == "__main__":

162
    run('Pretrain ICT BERT model', get_train_val_test_data,
163
        model_provider, forward_step)