data_samplers.py 7.75 KB
Newer Older
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Dataloaders."""


import random
20
21
22
import torch
import numpy as np
from torch.utils.data import Dataset
Vijay Korthikanti's avatar
Vijay Korthikanti committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from megatron import get_args
from megatron import mpu


def build_pretraining_data_loader(dataset, consumed_samples):
    """Buld dataloader given an input dataset."""

    if dataset is None:
        return None
    args = get_args()

    # Megatron sampler
    if args.dataloader_type == 'single':
        batch_sampler = MegatronPretrainingSampler(
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=args.micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
            data_parallel_size=mpu.get_data_parallel_world_size())
    elif args.dataloader_type == 'cyclic':
        batch_sampler = MegatronPretrainingRandomSampler(
44
            dataset,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
45
46
47
48
            total_samples=len(dataset),
            consumed_samples=consumed_samples,
            micro_batch_size=args.micro_batch_size,
            data_parallel_rank=mpu.get_data_parallel_rank(),
49
50
            data_parallel_size=mpu.get_data_parallel_world_size(),
            data_sharding=args.data_sharding)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
52
53
54
55
56
57
58
59
60
61
62
63
    else:
        raise Exception('{} dataloader type is not supported.'.format(
                args.dataloader_type))

    # Torch dataloader.
    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

class MegatronPretrainingSampler:

    def __init__(self, total_samples, consumed_samples, micro_batch_size,
64
                 data_parallel_rank, data_parallel_size, drop_last=True):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
66
67
68
69
70
71
        # Keep a copy of input params for later use.
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
72
        self.drop_last = drop_last
Vijay Korthikanti's avatar
Vijay Korthikanti committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.consumed_samples < self.total_samples, \
            'no samples left to consume: {}, {}'.format(self.consumed_samples,
                                                        self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

89
90
91
92
93
    def get_start_end_idx(self):
        start_idx = self.data_parallel_rank * self.micro_batch_size
        end_idx = start_idx + self.micro_batch_size
        return start_idx, end_idx

Vijay Korthikanti's avatar
Vijay Korthikanti committed
94
95
    def __iter__(self):
        batch = []
96
        # Last batch will be dropped if drop_last is not set False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
97
98
99
        for idx in range(self.consumed_samples, self.total_samples):
            batch.append(idx)
            if len(batch) == self.micro_batch_times_data_parallel_size:
100
                start_idx, end_idx = self.get_start_end_idx()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
101
102
103
                yield batch[start_idx:end_idx]
                batch = []

104
105
106
107
108
        # Check the last partial batch and see drop_last is set
        if len(batch) > 0 and not self.drop_last:
            start_idx, end_idx = self.get_start_end_idx()
            yield batch[start_idx:end_idx]

Vijay Korthikanti's avatar
Vijay Korthikanti committed
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
class RandomSeedDataset(Dataset):

    def __init__(self, dataset):
        args = get_args()
        self.base_seed = args.seed
        self.curr_seed = args.seed
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def set_epoch(self, epoch):
        self.curr_seed = self.base_seed + epoch

    def __getitem__(self, idx):
        seed = idx + self.curr_seed
        torch.manual_seed(seed)
        random.seed(seed)
        np.random.seed(seed)
        return self.dataset[idx]


Vijay Korthikanti's avatar
Vijay Korthikanti committed
132
133
class MegatronPretrainingRandomSampler:

134
135
    def __init__(self, dataset, total_samples, consumed_samples, micro_batch_size,
                 data_parallel_rank, data_parallel_size, data_sharding):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
136
        # Keep a copy of input params for later use.
137
        self.dataset = dataset
Vijay Korthikanti's avatar
Vijay Korthikanti committed
138
139
140
141
142
        self.total_samples = total_samples
        self.consumed_samples = consumed_samples
        self.micro_batch_size = micro_batch_size
        self.data_parallel_rank = data_parallel_rank
        self.data_parallel_size = data_parallel_size
143
        self.data_sharding = data_sharding
Vijay Korthikanti's avatar
Vijay Korthikanti committed
144
145
        self.micro_batch_times_data_parallel_size = \
            self.micro_batch_size * data_parallel_size
146
147
        self.last_batch_size = \
            self.total_samples % self.micro_batch_times_data_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161

        # Sanity checks.
        assert self.total_samples > 0, \
            'no sample to consume: {}'.format(self.total_samples)
        assert self.micro_batch_size > 0
        assert data_parallel_size > 0
        assert self.data_parallel_rank < data_parallel_size, \
            'data_parallel_rank should be smaller than data size: {}, ' \
            '{}'.format(self.data_parallel_rank, data_parallel_size)

    def __len__(self):
        return self.total_samples

    def __iter__(self):
162
163
164
        active_total_samples = self.total_samples - self.last_batch_size
        self.epoch = self.consumed_samples // active_total_samples
        current_epoch_samples = self.consumed_samples % active_total_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
165
166
        assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0

Vijay Korthikanti's avatar
Vijay Korthikanti committed
167
        if isinstance(self.dataset, RandomSeedDataset):
168
169
            self.dataset.set_epoch(self.epoch)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
170
        # data sharding and random sampling
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        if self.data_sharding:
            bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) \
                           * self.micro_batch_size
            bucket_offset = current_epoch_samples // self.data_parallel_size
            start_idx = self.data_parallel_rank * bucket_size
            
            g = torch.Generator()
            g.manual_seed(self.epoch)
            random_idx = torch.randperm(bucket_size, generator=g).tolist()
            idx_range = [start_idx + x for x in random_idx[bucket_offset:]]
        else:
            full_bucket_size = (self.total_samples // self.micro_batch_size) \
                                * self.micro_batch_size
            full_bucket_offset = current_epoch_samples
            g = torch.Generator()
            g.manual_seed(self.epoch)
            idx_range_total = \
                torch.randperm(full_bucket_size, generator=g).tolist()
            idx_range_active = idx_range_total[full_bucket_offset:]
            idx_range = idx_range_active[self.data_parallel_rank::self.data_parallel_size]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
191
192
193
194
195
196
197
198
199

        batch = []
        # Last batch if not complete will be dropped.
        for idx in idx_range:
            batch.append(idx)
            if len(batch) == self.micro_batch_size:
                self.consumed_samples += self.micro_batch_times_data_parallel_size
                yield batch
                batch = []