communication.py 5.8 KB
Newer Older
mshoeybi's avatar
working  
mshoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Communications utilities."""


import torch

mshoeybi's avatar
mshoeybi committed
21
22
23
from megatron import mpu


mshoeybi's avatar
mshoeybi committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

def recv_from_prev_pipeline_rank_(recv_buffer=None):
    """Receive from previous pipeline stage and update the
    input buffer inplace."""
    if not mpu.is_pipeline_first_stage():
        assert recv_buffer is not None
        recv_prev_op = torch.distributed.P2POp(
            torch.distributed.irecv, recv_buffer,
            mpu.get_pipeline_model_parallel_prev_rank())
        reqs = torch.distributed.batch_isend_irecv([recv_prev_op])
        for req in reqs:
            req.wait()
        # To protect against race condition when using batch_isend_irecv().
        torch.cuda.synchronize()



def send_to_next_pipeline_rank(tensor=None):
    """Send output to the next pipeline stage."""
    if not mpu.is_pipeline_last_stage():
        assert tensor is not None
        send_next_op = torch.distributed.P2POp(
            torch.distributed.isend, tensor,
            mpu.get_pipeline_model_parallel_next_rank())
        reqs = torch.distributed.batch_isend_irecv([send_next_op])
        for req in reqs:
            req.wait()
        # To protect against race condition when using batch_isend_irecv().
        torch.cuda.synchronize()



mshoeybi's avatar
mshoeybi committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
def broadcast_from_last_pipeline_stage(size, dtype, tensor=None):
    """Broadcast a tensor from last pipeline stage to all ranks."""

    if mpu.is_pipeline_last_stage():
        assert tensor is not None
        assert tensor.is_cuda
        assert tensor.is_contiguous()
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())
    # Get the group and corresponding source rank.
    src = mpu.get_pipeline_model_parallel_last_rank()
    group = mpu.get_pipeline_model_parallel_group()
    torch.distributed.broadcast(tensor, src, group)

    return tensor


mshoeybi's avatar
working  
mshoeybi committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

def broadcast_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Broadcast tensor values from last stage into the first stage."""

    # Only first and last stage pipeline stages need to be involved.
    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    if is_last_stage or is_first_stage:
        if is_last_stage:
            assert tensor is not None
            assert tensor.is_cuda
            assert tensor.is_contiguous()
        else:
            tensor = torch.empty(size,
                                 dtype=dtype,
                                 device=torch.cuda.current_device())
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        # Broadcast from last stage into the first stage.
        torch.distributed.broadcast(tensor, src, group)
    else:
        tensor = None

    return tensor



mshoeybi's avatar
mshoeybi committed
102
103
104
105
106
107
108
109
def copy_from_last_to_first_pipeline_stage(size, dtype, tensor=None):
    """Copy tensor values from last stage into the first stage.
    Note that the input tensor is updated in place."""

    # Only first and last stage pipeline stages need to be involved.
    is_last_stage = mpu.is_pipeline_last_stage()
    is_first_stage = mpu.is_pipeline_first_stage()
    if is_last_stage or is_first_stage:
mshoeybi's avatar
working  
mshoeybi committed
110
111
112
        assert tensor is not None
        assert tensor.is_cuda
        is_contiguous = tensor.is_contiguous()
mshoeybi's avatar
mshoeybi committed
113
114
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
mshoeybi's avatar
working  
mshoeybi committed
115
116
        if is_contiguous:
            tensor_ = tensor
mshoeybi's avatar
mshoeybi committed
117
        else:
mshoeybi's avatar
working  
mshoeybi committed
118
119
120
121
122
123
            if is_last_stage:
                tensor_ = tensor.contiguous()
            else:
                tensor_ = torch.empty(size,
                                      dtype=dtype,
                                      device=torch.cuda.current_device())
mshoeybi's avatar
mshoeybi committed
124
125
126
        # Broadcast from last stage into the first stage.
        torch.distributed.broadcast(tensor_, src, group)
        # Update the first stage tensor
mshoeybi's avatar
working  
mshoeybi committed
127
        if is_first_stage and not is_contiguous:
mshoeybi's avatar
mshoeybi committed
128
            tensor[...] = tensor_
mshoeybi's avatar
working  
mshoeybi committed
129
130


mshoeybi's avatar
mshoeybi committed
131

mshoeybi's avatar
working  
mshoeybi committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def broadcast_tensor(size, dtype, tensor=None, rank=0):
    """ Given size and type of a tensor on all ranks and the tensor value
        only on a specific rank, broadcast from that rank to all other ranks.
    """

    if torch.distributed.get_rank() == rank:
        assert tensor is not None
        assert tensor.is_cuda
    else:
        tensor = torch.empty(size,
                             dtype=dtype,
                             device=torch.cuda.current_device())

    torch.distributed.broadcast(tensor, rank)

    return tensor


mshoeybi's avatar
mshoeybi committed
150

mshoeybi's avatar
mshoeybi committed
151
152
153
154
155
156
157
158
159
160
161
def broadcast_list(size, dtype, list_values=None, rank=0):
    """Broadcast a list of values with a given type."""

    tensor = None
    if torch.distributed.get_rank() == rank:
        tensor = torch.tensor(list_values, dtype=dtype,
                              device=torch.cuda.current_device())

    return broadcast_tensor(size, dtype, tensor=tensor, rank=rank)


mshoeybi's avatar
mshoeybi committed
162

mshoeybi's avatar
working  
mshoeybi committed
163
164
165
def broadcast_int_list(size, int_list=None, rank=0):
    """Broadcast a list of interger values."""

mshoeybi's avatar
mshoeybi committed
166
167
168
    return broadcast_list(size, torch.int64, list_values=int_list, rank=rank)


mshoeybi's avatar
mshoeybi committed
169

mshoeybi's avatar
mshoeybi committed
170
171
def broadcast_float_list(size, float_list=None, rank=0):
    """Broadcast a list of float values."""
mshoeybi's avatar
working  
mshoeybi committed
172

mshoeybi's avatar
mshoeybi committed
173
174
    return broadcast_list(size, torch.float32, list_values=float_list,
                          rank=rank)