finetune.py 3.57 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14

"""Controllable Dialogue Finetuning"""

import torch
from functools import partial
from megatron import get_args
from megatron import get_timers
from megatron import print_rank_0
from megatron import get_tokenizer
from megatron import mpu
from megatron.model import GPTModel
from megatron.training import evaluate_and_print_results
from megatron.utils import average_losses_across_data_parallel_group
from tasks.finetune_utils import finetune
zihanl's avatar
zihanl committed
15
from tasks.dialctrl.data import build_train_valid_datasets
zihanl's avatar
zihanl committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from tasks.dialctrl.utils import get_ltor_attention_masks_and_position_ids


def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    print_rank_0('building GPT model ...')
    model = GPTModel(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
    return model


def train_valid_datasets_provider():
    """Build train, valid, and test datasets for dialog/control module"""
    args = get_args()

    print_rank_0('> building train, validation, and test datasets for %s module ...' % args.train_module)
    
zihanl's avatar
zihanl committed
38
39
40
    train_ds, valid_ds = build_train_valid_datasets(
        train_data_path=args.train_data_path,
        valid_data_path=args.test_data_path,
zihanl's avatar
zihanl committed
41
42
        train_module=args.train_module,
        max_seq_len=args.max_seq_len,
zihanl's avatar
zihanl committed
43
44
45
46
47
48
49
        seed=args.seed,
        last_turn=args.last_turn,
        no_control_code=args.no_control_code,
        add_separator=args.add_separator,
        add_ctrl_code_to_dialog=args.add_ctrl_code_to_dialog,
        remove_ctrl_sent=args.remove_ctrl_sent)
        
zihanl's avatar
zihanl committed
50
    print_rank_0("> finished creating datasets for %s module ..." % args.train_module)
zihanl's avatar
zihanl committed
51
52
    print_rank_0('> Train size: %d' % len(train_ds))
    print_rank_0('> Validation size: %d' % len(valid_ds))
zihanl's avatar
zihanl committed
53
54

    args.eval_interval = len(train_ds) // args.global_batch_size
zihanl's avatar
zihanl committed
55
56
57
58
    print_rank_0('> evaluation interval: %d' % args.eval_interval)

    args.eval_iters = len(valid_ds) // args.global_batch_size
    print_rank_0('> evaluation iteration: %d' % args.eval_iters)
zihanl's avatar
zihanl committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    return train_ds, valid_ds


def process_batch(batch):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text', 'loss_mask']
    datatype = torch.int64

    data_b = mpu.broadcast_data(keys, batch, datatype)

    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    loss_mask = data_b['loss_mask'].float()

    # Get the attention_mask and postition ids.
    attention_mask, position_ids = \
        get_ltor_attention_masks_and_position_ids(tokens, tokenizer.eod_id)

    return tokens, labels, loss_mask, attention_mask, position_ids


def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(batch, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()
    
    try:
        batch_ = next(batch)
    except BaseException:
        batch_ = batch

    tokens, labels, loss_mask, attention_mask, position_ids = process_batch(batch_)

    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def main():
    
    finetune(train_valid_datasets_provider, model_provider, \
             forward_step=forward_step)