data.py 10.6 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""Build Dataset for Controllable Coversational Model"""

import os
import torch
import numpy as np

from megatron import get_tokenizer
from megatron import print_rank_0

def read_data(tokenizer, data_path, train_module):
    """read and tokenize dialog data"""

    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            length_split = len(splits)
            assert length_split == 2 or length_split == 3 or length_split == 4

            if train_module == "dialog":
                # if length_split == 2:
                #     continue

                dialog_context = splits[0]
                if length_split > 2:
                    ctrl_sent = splits[-2]
                response = splits[-1]
                # only take the last three turns in the dialog context
                turns = dialog_context.split(" [SEP] ")
                turns = turns[-3:]

                # input_ids
zihanl's avatar
zihanl committed
35
36
37
38
                input_ids = []
                if length_split > 2:
                    input_ids.extend(tokenizer.tokenize("( " + ctrl_sent + " )"))

zihanl's avatar
zihanl committed
39
40
41
                for idx, turn in enumerate(turns):
                    if not (turn.endswith("?") or turn.endswith(".") or turn.endswith("!")):
                        turn = turn + " ."
zihanl's avatar
zihanl committed
42
                    input_ids.extend(tokenizer.tokenize(turn))
zihanl's avatar
zihanl committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
                
                # output_ids
                output_ids = tokenizer.tokenize(response)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            elif train_module == "control":
                if length_split == 2:
                    continue
                dialog_context = splits[0]
                ctrl_sent = splits[-2]
                ctrl_code = splits[1] if length_split == 4 else None

                turns = dialog_context.split(" [SEP] ")
                # put control code at the begginning
                input_ids = []
                if ctrl_code:
                    ctrl_code_list = ctrl_code.split(" [CTRL] ")
                    for code in ctrl_code_list:
                        input_ids.extend(tokenizer.tokenize("( " + code + " )"))
                
                turns = turns[-3:]
                for turn in turns:
                    if not (turn.endswith("?") or turn.endswith(".") or turn.endswith("!")):
                        turn = turn + " ."
                    input_ids.extend(tokenizer.tokenize(turn))

                # output_ids
                outputs = ctrl_sent
                output_ids = tokenizer.tokenize(outputs)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
zihanl's avatar
zihanl committed
77
78
                raise ValueError("Please input a correct train-module name! " \
                                 "(either dialog or cnotrol))")
zihanl's avatar
zihanl committed
79
80
81
82
                
    return data_list


zihanl's avatar
zihanl committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def read_data_v2(tokenizer, data_path, train_module, 
                 last_turn=False, no_control_code=False, add_separator=False, 
                 add_ctrl_code_to_dialog=False, remove_ctrl_sent=False):
    """
    Read and tokenize data for version 2 (v2) data files.
    Format: control code \t dialog context \t control sentence \t response.
    Response only comes from the wizard.
    Currently, this function is used to build test dataset for calculating PPL.
    """
    
    data_list = []
    with open(data_path, "r") as f:
        for i, line in enumerate(f):
            line = line.rstrip()
            splits = line.split("\t")
            assert len(splits) == 4

            control_code = splits[0]
            dialog_context = splits[1]
            control_sent = splits[2]
            response = splits[3]

            turns = dialog_context.split(" [SEP] ")
            turns = turns[-3:]

            if train_module == "dialog":
                # input_ids
                if add_ctrl_code_to_dialog:
                    ctrl_code = control_code.split(" [CTRL] ")[0]
                    input_ids = tokenizer.tokenize("( " + ctrl_code + " )")
                    if not remove_ctrl_sent and control_sent != "no_passages_used":
                        input_ids.extend(tokenizer.tokenize("( " + control_sent + " )")[:256])
                
                else:
                    if remove_ctrl_sent or control_sent == "no_passages_used":
                        input_ids = []
                    else:
                        input_ids = tokenizer.tokenize("( " + control_sent + " )")[:256]
                
                for turn in turns:
                    if add_separator:
                        turn = "<< " + turn + " >>"
                    input_ids.extend(tokenizer.tokenize(turn))

                if add_separator:
                    input_ids.extend(tokenizer.tokenize(":"))

                # output_ids
                output_ids = tokenizer.tokenize(response)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})
                
            elif train_module == "control":
                # skip example without control sentences
                if control_sent == "no_passages_used":
                    continue

                input_ids = []
                if not no_control_code:
                    ctrl_code_list = control_code.split(" [CTRL] ")[:3]
                    # only choose maximum three control codes
                    for code in ctrl_code_list:
                        if len(code) > 0:
                            input_ids.extend(tokenizer.tokenize("( " + code + " )"))
                
                if last_turn:
                    input_ids.extend(tokenizer.tokenize(turns[-1]))
                else:
                    for turn in turns:
                        if add_separator:
                            turn = "<< " + turn + " >>"
                        input_ids.extend(tokenizer.tokenize(turn))
                
                if add_separator:
                    input_ids.extend(tokenizer.tokenize(":"))

                output_ids = tokenizer.tokenize(control_sent)

                data_list.append({"input_ids": input_ids, "output_ids": output_ids})

            else:
                raise ValueError("Please input a correct train-module name! " \
                                 "(either dialog or cnotrol))")
    
    return data_list


zihanl's avatar
zihanl committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def data_shuffle(data, seed):
    # set random seed to make the shuffling reproducible
    np.random.seed(seed)
    np.random.shuffle(data)
    return data


class ControlDialogDataset(torch.utils.data.Dataset):

    def __init__(self, data, max_seq_len, sep_id, pad_id, eod_id):
        # need to deal with padding, label masking
        self.data = data
        self.max_seq_len = max_seq_len
        self.sep_id = sep_id
        self.pad_id = pad_id
        self.eod_id = eod_id

    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data_dict = self.data[idx]
        input_ids, output_ids = data_dict["input_ids"], data_dict["output_ids"]
        
zihanl's avatar
zihanl committed
194
        # assert len(input_ids) < self.max_seq_len, "Set a larger max-seq-len!"
zihanl's avatar
zihanl committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208

        # length_of_loss_mask == length_of_text - 1
        # text = input_ids + [self.sep_id] + output_ids + [self.eod_id]
        text = input_ids + output_ids + [self.eod_id]
        loss_mask = [0]*(len(input_ids)-1) + [1]*(len(output_ids)+1)

        text_len = len(text)
        if text_len > self.max_seq_len+1:
            text = text[:self.max_seq_len+1]
            loss_mask = loss_mask[:self.max_seq_len]
        else:
            text += [self.pad_id] * (self.max_seq_len+1 - text_len)
            loss_mask += [0] * (self.max_seq_len+1 - text_len)

zihanl's avatar
zihanl committed
209
210
        return {"text": np.array(text, dtype=np.int64), \
                "loss_mask": np.array(loss_mask, dtype=np.int64)}
zihanl's avatar
zihanl committed
211
212


zihanl's avatar
zihanl committed
213
214
215
def build_train_valid_datasets(train_data_path, valid_data_path, train_module,
                               max_seq_len, seed, last_turn, no_control_code, 
                               add_separator, add_ctrl_code_to_dialog, remove_ctrl_sent):
zihanl's avatar
zihanl committed
216
217
    """Build train, valid, and test datasets."""

zihanl's avatar
zihanl committed
218
    # dataname_dict = {"wizard_of_wikipedia": {"train": "train_entity_based_control.txt", "valid": "valid_random_split_entity_based_control.txt", "test": "test_random_split_entity_based_control.txt"}}
zihanl's avatar
zihanl committed
219
    
zihanl's avatar
zihanl committed
220
221
222
    # train_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["train"])
    # valid_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["valid"])
    # test_data_path = os.path.join(data_folder, dataset_name+"/processed/"+dataname_dict[dataset_name]["test"])
zihanl's avatar
zihanl committed
223
224

    tokenizer = get_tokenizer()
zihanl's avatar
zihanl committed
225
226
227
228
229
230
231
    # train_data_list = read_data(tokenizer, train_data_path, train_module)
    train_data_list = read_data_v2(tokenizer, train_data_path, train_module, 
                                   last_turn, no_control_code, add_separator, 
                                   add_ctrl_code_to_dialog, remove_ctrl_sent)
    valid_data_list = read_data_v2(tokenizer, valid_data_path, train_module,
                                   last_turn, no_control_code, add_separator, 
                                   add_ctrl_code_to_dialog, remove_ctrl_sent)
zihanl's avatar
zihanl committed
232
233
234
235

    # shuffle the training data
    train_data_list = data_shuffle(train_data_list, seed)

zihanl's avatar
zihanl committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    # build train, valid datasets
    train_dataset = ControlDialogDataset(train_data_list, 
                                         max_seq_len, 
                                         sep_id=tokenizer.sep_id, 
                                         pad_id=tokenizer.pad_id, 
                                         eod_id=tokenizer.eod_id)

    valid_dataset = ControlDialogDataset(valid_data_list, 
                                         max_seq_len, 
                                         sep_id=tokenizer.sep_id, 
                                         pad_id=tokenizer.pad_id, 
                                         eod_id=tokenizer.eod_id)

    return train_dataset, valid_dataset


def build_test_dataset(test_data_path, train_module, max_seq_len, 
                       last_turn, no_control_code, add_separator,
                       add_ctrl_code_to_dialog, remove_ctrl_sent):
    tokenizer = get_tokenizer()

    test_data_list = read_data_v2(tokenizer, test_data_path, train_module,
                                  last_turn, no_control_code, add_separator,
                                  add_ctrl_code_to_dialog, remove_ctrl_sent)

    test_dataset = ControlDialogDataset(test_data_list, 
                                        max_seq_len, 
                                        sep_id=tokenizer.sep_id, 
                                        pad_id=tokenizer.pad_id, 
                                        eod_id=tokenizer.eod_id)
zihanl's avatar
zihanl committed
266

zihanl's avatar
zihanl committed
267
    return test_dataset