language_model.py 23 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28
29
30
31
32

def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
    # Parallel logits.
33
    input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
34
35
36
37
38
39
40
41
    # Matrix multiply.
    if bias is None:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight)
    else:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight, bias)
    # Gather if needed.
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
42

43
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
44
45


46
def get_language_model(num_tokentypes, add_pooler,
47
48
49
                       encoder_attn_mask_type, init_method=None,
                       scaled_init_method=None, add_decoder=False,
                       decoder_attn_mask_type=AttnMaskType.causal):
Mohammad's avatar
Mohammad committed
50
    """Build language model and return along with the key to save."""
51
    args = get_args()
Mohammad's avatar
Mohammad committed
52

53
54
55
56
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
57
58
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
59

60
    # Language model.
61
    args = [init_method, scaled_init_method, encoder_attn_mask_type]
62
63
    kwargs = {}
    cls = None
64
    if mpu.is_pipeline_first_stage() and mpu.is_pipeline_last_stage():
65
66
        cls = TransformerLanguageModel
        kwargs['num_tokentypes'] = num_tokentypes
67
        kwargs['add_decoder'] = add_decoder
68
        kwargs['decoder_attn_mask_type'] = decoder_attn_mask_type
69
        kwargs['add_pooler'] = add_pooler
70
    elif mpu.is_pipeline_first_stage() and not mpu.is_pipeline_last_stage():
71
72
        cls = TransformerLanguageModelFirstStage
        kwargs['num_tokentypes'] = num_tokentypes
73
    elif not mpu.is_pipeline_first_stage() and mpu.is_pipeline_last_stage():
74
75
76
77
78
79
80
        cls = TransformerLanguageModelLastStage
        kwargs['add_pooler'] = add_pooler
    else:
        cls = TransformerLanguageModelIntermediateStage

    # Language model.
    language_model = cls(*args, **kwargs)
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)

    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
125

126
127
128
129
130
131
132
133
134
135
136
137
138
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

139
140
        args = get_args()

141
142
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
143
144
            vocab_size, self.hidden_size,
            init_method=self.init_method)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
184
        args = get_args()
185
186
187
188
189
190
191
192
193
194
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
195
196
        else:
            assert self.tokentype_embeddings is None
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
248
        if self.num_tokentypes > 0:
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


266
class TransformerLanguageModelBase(MegatronModule):
267
268
269
270
271
272
273
274
275
276
277
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
278

279
    def __init__(self,
Mohammad's avatar
Mohammad committed
280
281
                 init_method,
                 output_layer_init_method,
282
                 encoder_attn_mask_type,
283
                 num_tokentypes=0,
284
                 add_decoder=False,
285
                 decoder_attn_mask_type=AttnMaskType.causal,
286
                 add_pooler=False):
287
        super(TransformerLanguageModelBase, self).__init__()
Mohammad's avatar
Mohammad committed
288
        args = get_args()
289

Mohammad's avatar
Mohammad committed
290
        self.hidden_size = args.hidden_size
291
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
292
        self.init_method = init_method
293
        self.encoder_attn_mask_type = encoder_attn_mask_type
294
        self.add_decoder = add_decoder
295
        self.decoder_attn_mask_type = decoder_attn_mask_type
296
297
        self.add_pooler = add_pooler

298
        # Embeddings.
299
        if mpu.is_pipeline_first_stage():
300
301
302
303
304
305
306
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
307

308
        # Transformer.
309
310
311
        self.encoder = ParallelTransformer(
            self.init_method,
            output_layer_init_method,
312
            self_attn_mask_type=self.encoder_attn_mask_type)
313
314
        self._encoder_key = 'encoder'

Vijay Korthikanti's avatar
Vijay Korthikanti committed
315
316
317
318
319
320
321
322
        # Decoder
        if self.add_decoder:
            assert args.pipeline_model_parallel_size == 1, \
                'pipeline parallelism is not supported in the presence of decoder'
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
323
                self_attn_mask_type=self.decoder_attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
324
            self._decoder_key = 'decoder'
325

Vijay Korthikanti's avatar
Vijay Korthikanti committed
326
        if mpu.is_pipeline_last_stage():
327
328
329
330
331
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

332
    def forward(self, enc_language_model_input, enc_attn_mask,
333
334
335
336
                dec_language_model_input=None, dec_attn_mask=None,
                enc_dec_attn_mask=None, tokentype_ids=None, layer_past=None,
                get_key_value=False, pooling_sequence_index=0, 
                enc_hidden_states=None, output_enc_hidden=False):
337
338

        # Embeddings.
339
        if mpu.is_pipeline_first_stage():
340
            (input_ids, position_ids) = enc_language_model_input
341
342
            embedding_output = self.embedding(input_ids, position_ids,
                                              tokentype_ids=tokentype_ids)
343
            encoder_input = embedding_output
344
        else:
345
346
347
348
349
            encoder_input = enc_language_model_input

        # encoder.
        if enc_hidden_states is None:
            encoder_output = self.encoder(encoder_input,
350
                                          enc_attn_mask,
351
352
353
354
355
356
357
358
359
360
                                          layer_past=layer_past,
                                          get_key_value=get_key_value)
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

        if mpu.is_pipeline_last_stage():
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
361
362
363
364
365
366
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
            if self.add_pooler and mpu.is_pipeline_last_stage():
                return encoder_output, pooled_output
367
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
                return encoder_output

        # Decoder Embedding
        (dec_input_ids, dec_position_ids) = dec_language_model_input
        dec_embedding_output = self.embedding(dec_input_ids,
                                              dec_position_ids)
        # decoder
        decoder_output = self.decoder(dec_embedding_output,
                                      dec_attn_mask,
                                      layer_past=layer_past,
                                      get_key_value=get_key_value,
                                      encoder_output=encoder_output,
                                      enc_dec_attn_mask=enc_dec_attn_mask)

        if self.add_pooler and mpu.is_pipeline_last_stage():
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
386
387
388
389
390
391

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
392
        if mpu.is_pipeline_first_stage():
393
394
395
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
396
397
        state_dict_[self._encoder_key] \
            = self.encoder.state_dict_for_save_checkpoint(
398
                destination, prefix, keep_vars)
399
400
401
402
403
        if mpu.is_pipeline_last_stage():
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
404
405
406
407
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
408
409
410
411
412
413
414

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
415
        if mpu.is_pipeline_first_stage():
416
417
418
419
420
421
422
423
424
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
425

426
427
428
429
430
431
        # Encoder.
        if self._encoder_key in state_dict:
            state_dict_ = state_dict[self._encoder_key]
        # for backward compatibility.
        elif 'transformer' in state_dict:
            state_dict_ = state_dict['transformer']
432
433
434
435
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
436
437
                if 'transformer.' in key:
                    state_dict_[key.split('transformer.')[1]] = state_dict[key]
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

        # for backward compatibility.
        state_dict_self_attention = {}
        for key in state_dict_.keys():
            if '.attention.' in key:
                state_dict_self_attention[key.replace(".attention.",
                    ".self_attention.")] = state_dict_[key]
            else:
                state_dict_self_attention[key] = state_dict_[key]
        state_dict_ = state_dict_self_attention

        self.encoder.load_state_dict(state_dict_, strict=strict)

        if mpu.is_pipeline_last_stage():
            # pooler
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
458
459
460
461
462
463
        # decoder
        if self.add_decoder:
            assert 'decoder' in state_dict, \
                'could not find data for pooler in the checkpoint'
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)
464
465
466
467
468
469
470
471
472
473


class TransformerLanguageModel(TransformerLanguageModelBase):
    """Transformer language model (see TransformerLanguageModelBase
       for description of arguments).
    """

    def __init__(self,
                 init_method,
                 output_layer_init_method,
474
                 encoder_attn_mask_type,
475
                 num_tokentypes=0,
476
                 decoder_attn_mask_type=AttnMaskType.causal,
477
                 add_decoder=False,
478
479
480
481
                 add_pooler=False):
        super(TransformerLanguageModel, self).__init__(
            init_method,
            output_layer_init_method,
482
            encoder_attn_mask_type,
483
            num_tokentypes=num_tokentypes,
484
            add_decoder=add_decoder,
485
            decoder_attn_mask_type=decoder_attn_mask_type,
486
487
            add_pooler=add_pooler)

488
    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
489
490
491
492
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
                enc_dec_attn_mask=None, tokentype_ids=None, layer_past=None,
                get_key_value=False, pooling_sequence_index=0,
                enc_hidden_states=None, output_enc_hidden=False):
493
        return super(TransformerLanguageModel, self).forward(
494
            (enc_input_ids, enc_position_ids),
495
            enc_attn_mask,
496
497
498
            dec_language_model_input=(dec_input_ids, dec_position_ids),
            dec_attn_mask=dec_attn_mask,
            enc_dec_attn_mask=enc_dec_attn_mask,
499
500
501
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value,
502
503
504
            pooling_sequence_index=pooling_sequence_index,
            enc_hidden_states=enc_hidden_states,
            output_enc_hidden=output_enc_hidden
505
506
507
508
509
510
511
512
513
514
515
        )


class TransformerLanguageModelFirstStage(TransformerLanguageModelBase):
    """Transformer language model, first stage (see
       TransformerLanguageModelBase for description of arguments).
    """

    def __init__(self,
                 init_method,
                 output_layer_init_method,
516
517
                 encoder_attn_mask_type,
                 num_tokentypes=0):
518
519
520
        super(TransformerLanguageModelFirstStage, self).__init__(
            init_method,
            output_layer_init_method,
521
522
            encoder_attn_mask_type,
            num_tokentypes=num_tokentypes)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

    def forward(self, input_ids, position_ids, attention_mask,
                tokentype_ids=None, layer_past=None, get_key_value=False):
        return super(TransformerLanguageModelFirstStage, self).forward(
            (input_ids, position_ids),
            attention_mask,
            tokentype_ids=tokentype_ids,
            layer_past=layer_past,
            get_key_value=get_key_value
        )


class TransformerLanguageModelIntermediateStage(TransformerLanguageModelBase):
    """Transformer language model, intermediate stage (see
       TransformerLanguageModelBase for description of arguments).
    """

    def __init__(self,
                 init_method,
542
                 output_layer_init_method,
543
                 encoder_attn_mask_type):
544
545
        super(TransformerLanguageModelIntermediateStage, self).__init__(
            init_method,
546
            output_layer_init_method,
547
            encoder_attn_mask_type)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

    def forward(self, hidden_states, attention_mask,
                layer_past=None, get_key_value=False):
        return super(TransformerLanguageModelIntermediateStage, self).forward(
            hidden_states,
            attention_mask,
            layer_past=layer_past,
            get_key_value=get_key_value
        )


class TransformerLanguageModelLastStage(TransformerLanguageModelBase):
    """Transformer language model, final stage (see
       TransformerLanguageModelBase for description of arguments).
    """

    def __init__(self,
                 init_method,
                 output_layer_init_method,
567
                 encoder_attn_mask_type,
568
569
570
571
                 add_pooler=False):
        super(TransformerLanguageModelLastStage, self).__init__(
            init_method,
            output_layer_init_method,
572
            encoder_attn_mask_type,
573
574
            add_pooler=add_pooler)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
575
576
577
    def forward(self, hidden_states, attention_mask,
                layer_past=None, get_key_value=False,
                pooling_sequence_index=0):
578
579
        return super(TransformerLanguageModelLastStage, self).forward(
            hidden_states,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
580
            attention_mask,
581
582
            layer_past=layer_past,
            get_key_value=get_key_value,
583
            pooling_sequence_index=pooling_sequence_index,
584
        )