ict_dataset.py 7.15 KB
Newer Older
1
import itertools
2
import random
3
import os
4
import sys
5
import time
6
7

import numpy as np
8
import torch
9
10
11
from torch.utils.data import Dataset

from megatron import get_tokenizer
12
13
14
from megatron import print_rank_0
from megatron import mpu
from megatron.data import helpers
15

16

17
class InverseClozeDataset(Dataset):
18
19
    """Dataset containing sentences and their blocks for an inverse cloze task."""
    def __init__(self, name, context_dataset, titles_dataset, data_prefix,
20
21
22
23
24
                 num_epochs, max_num_samples, max_seq_length,
                 short_seq_prob, seed):
        self.name = name
        self.seed = seed
        self.max_seq_length = max_seq_length
25
26
        self.context_dataset = context_dataset
        self.titles_dataset = titles_dataset
27
        self.short_seq_prob = short_seq_prob
28
29
30
31
32
33
34
35
36
37
        self.rng = random.Random(self.seed)

        self.samples_mapping = get_samples_mapping(self.context_dataset,
                                                   self.titles_dataset,
                                                   data_prefix,
                                                   num_epochs,
                                                   max_num_samples,
                                                   self.max_seq_length,
                                                   self.seed,
                                                   self.name)
38
39
40
41
42
43
44
45
46
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_list = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad

    def __len__(self):
47
        return self.samples_mapping.shape[0]
48
49

    def __getitem__(self, idx):
Neel Kant's avatar
Neel Kant committed
50
        start_idx, end_idx, doc_idx, block_idx = self.samples_mapping[idx]
51
52
        title = list(self.titles_dataset[int(doc_idx)])
        context = [list(self.context_dataset[i]) for i in range(start_idx, end_idx)]
53
        assert len(context) > 1
54

55
        # avoid selecting the first or last sentence to be the query.
56
57
58
59
        if len(context) == 2:
            rand_sent_idx = int(self.rng.random() > 0.5)
        else:
            rand_sent_idx = self.rng.randint(1, len(context) - 2)
60

61
        # keep the query in the context 10% of the time.
62
        if self.rng.random() < 1:
63
            input = context[rand_sent_idx].copy()
64
65
        else:
            input = context.pop(rand_sent_idx)
66

67
68
        # may still need to truncate because blocks are concluded when
        # the sentence lengths have exceeded max_seq_length.
69
70
        input = input[:self.max_seq_length - 2]
        context = list(itertools.chain(*context))[:self.max_seq_length - (3 + len(title))]
71

72
73
        input_tokens, input_token_types, input_pad_mask = self.concat_and_pad_tokens(input)
        context_tokens, context_token_types, context_pad_mask = self.concat_and_pad_tokens(context, title)
74
75
76
77
78
79
80

        sample = {
            'input_text': np.array(input_tokens),
            'input_types': np.array(input_token_types),
            'input_pad_mask': np.array(input_pad_mask),
            'context_text': np.array(context_tokens),
            'context_types': np.array(context_token_types),
Neel Kant's avatar
Neel Kant committed
81
            'context_pad_mask': np.array(context_pad_mask),
82
            'context_indices': np.array([start_idx, end_idx, doc_idx, block_idx]).astype(np.int64)
83
84
85
86
        }

        return sample

87
    def concat_and_pad_tokens(self, tokens, title=None):
88
89
        """concat with special tokens and pad sequence to self.max_seq_length"""
        tokens = [self.cls_id] + tokens + [self.sep_id]
90
91
        if title is not None:
            tokens += title + [self.sep_id]
92
        assert len(tokens) <= self.max_seq_length, len(tokens)
93
94

        num_pad = self.max_seq_length - len(tokens)
95
96
        pad_mask = [0] * len(tokens) + [1] * num_pad
        tokens += [self.pad_id] * num_pad
97
        token_types = [0] * self.max_seq_length
98
99
        return tokens, token_types, pad_mask

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def get_samples_mapping(context_dataset,
                        titles_dataset,
                        data_prefix,
                        num_epochs,
                        max_num_samples,
                        max_seq_length,
                        seed,
                        name):
    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert context_dataset.doc_idx.dtype == np.int64
        assert context_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))
        samples_mapping = helpers.build_blocks_mapping(
            context_dataset.doc_idx,
            context_dataset.sizes,
            titles_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length-3,  # account for added tokens
            seed,
            verbose)
        print_rank_0(' > done building samples index mapping')
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
        samples_mapping.shape[0]))

    return samples_mapping