p2p_communication.py 9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
from functools import reduce
import operator
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch

from megatron import get_args
from megatron import mpu


def _communicate(tensor_send_next, tensor_send_prev, recv_prev, recv_next,
                 use_ring_exchange=False):
    """Communicate tensors between stages."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
34
    if args.scatter_gather_tensors_in_pipeline:
35
36
        tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1) // \
            mpu.get_tensor_model_parallel_world_size()
37
38
    else:
        tensor_chunk_shape = tensor_shape
39
40
41
42
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
    if recv_prev:
43
        tensor_recv_prev = torch.empty(tensor_chunk_shape,
44
45
46
47
                                       requires_grad=True,
                                       device=torch.cuda.current_device(),
                                       dtype=dtype)
    if recv_next:
48
        tensor_recv_next = torch.empty(tensor_chunk_shape,
49
50
51
52
                                       requires_grad=True,
                                       device=torch.cuda.current_device(),
                                       dtype=dtype)

53
54
55
56
57
58
59
    if args.scatter_gather_tensors_in_pipeline:
        if tensor_send_next is not None:
            tensor_send_next = mpu.split_tensor_into_1d_equal_chunks(tensor_send_next)

        if tensor_send_prev is not None:
            tensor_send_prev = mpu.split_tensor_into_1d_equal_chunks(tensor_send_prev)

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    # Send tensors in both the forward and backward directions as appropriate.
    if use_ring_exchange:
        torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                        tensor_recv_prev=tensor_recv_prev,
                                        tensor_send_next=tensor_send_next,
                                        tensor_recv_next=tensor_recv_next,
                                        group=mpu.get_pipeline_model_parallel_group())
    else:
        ops = []
        if tensor_send_prev is not None:
            send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                                   mpu.get_pipeline_model_parallel_prev_rank())
            ops.append(send_prev_op)
        if tensor_recv_prev is not None:
            recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                                   mpu.get_pipeline_model_parallel_prev_rank())
            ops.append(recv_prev_op)
        if tensor_send_next is not None:
            send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                                   mpu.get_pipeline_model_parallel_next_rank())
            ops.append(send_next_op)
        if tensor_recv_next is not None:
            recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                                   mpu.get_pipeline_model_parallel_next_rank())
            ops.append(recv_next_op)
        reqs = torch.distributed.batch_isend_irecv(ops)
        for req in reqs:
            req.wait()
88
89
90
91
92
93
94
95
96
97
98
    torch.cuda.synchronize()

    tensor_recv_prev_before = tensor_recv_prev
    if args.scatter_gather_tensors_in_pipeline:
        if recv_prev:
            tensor_recv_prev = mpu.gather_split_1d_tensor(
                tensor_recv_prev).view(tensor_shape).requires_grad_()

        if recv_next:
            tensor_recv_next = mpu.gather_split_1d_tensor(
                tensor_recv_next).view(tensor_shape).requires_grad_()
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

    return tensor_recv_prev, tensor_recv_next


def recv_forward(timers=None, use_ring_exchange=False):
    if mpu.is_pipeline_first_stage():
        input_tensor = None
    else:
        if timers is not None:
            timers('forward-recv').start()
        input_tensor, _ = _communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_prev=True,
            recv_next=False,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('forward-recv').stop()
    return input_tensor


def recv_backward(timers=None, use_ring_exchange=False):
    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
        if timers is not None:
            timers('backward-recv').start()
        _, output_tensor_grad = _communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_prev=False,
            recv_next=True,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('backward-recv').stop()
    return output_tensor_grad


def send_forward(output_tensor, timers=None, use_ring_exchange=False):
    if not mpu.is_pipeline_last_stage():
        if timers is not None:
            timers('forward-send').start()
        _communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_prev=False,
            recv_next=False,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('forward-send').stop()


def send_backward(input_tensor_grad, timers=None, use_ring_exchange=False):
    if not mpu.is_pipeline_first_stage():
        if timers is not None:
            timers('backward-send').start()
        _communicate(
            tensor_send_next=None,
            tensor_send_prev=input_tensor_grad,
            recv_prev=False,
            recv_next=False,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('backward-send').stop()


def send_forward_recv_backward(output_tensor, timers=None, use_ring_exchange=False):
    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
        if timers is not None:
            timers('forward-send-backward-recv').start()
        _, output_tensor_grad = _communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_prev=False,
            recv_next=True,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('forward-send-backward-recv').stop()
    return output_tensor_grad


def send_backward_recv_forward(input_tensor_grad, timers=None, use_ring_exchange=False):
    if mpu.is_pipeline_first_stage():
        input_tensor = None
    else:
        if timers is not None:
            timers('backward-send-forward-recv').start()
        input_tensor, _ = _communicate(
            tensor_send_next=None,
            tensor_send_prev=input_tensor_grad,
            recv_prev=True,
            recv_next=False,
            use_ring_exchange=use_ring_exchange)
        if timers is not None:
            timers('backward-send-forward-recv').stop()
    return input_tensor


def send_forward_recv_forward(output_tensor, recv_prev, timers=None):
    if timers is not None:
        timers('forward-send-forward-recv').start()
    input_tensor, _ = _communicate(
        tensor_send_next=output_tensor,
        tensor_send_prev=None,
        recv_prev=recv_prev,
        recv_next=False,
        use_ring_exchange=True)
    if timers is not None:
        timers('forward-send-forward-recv').stop()
    return input_tensor


def send_backward_recv_backward(input_tensor_grad, recv_next, timers=None):
    if timers is not None:
        timers('backward-send-backward-recv').start()
    _, output_tensor_grad = _communicate(
        tensor_send_next=None,
        tensor_send_prev=input_tensor_grad,
        recv_prev=False,
        recv_next=recv_next,
        use_ring_exchange=True)
    if timers is not None:
        timers('backward-send-backward-recv').stop()
    return output_tensor_grad


def send_forward_backward_recv_forward_backward(
        output_tensor, input_tensor_grad, recv_prev,
        recv_next, timers=None):
    if timers is not None:
        timers('forward-backward-send-forward-backward-recv').start()
    input_tensor, output_tensor_grad = _communicate(
        tensor_send_next=output_tensor,
        tensor_send_prev=input_tensor_grad,
        recv_prev=recv_prev,
        recv_next=recv_next,
        use_ring_exchange=True)
    if timers is not None:
        timers('forward-backward-send-forward-backward-recv').stop()
    return input_tensor, output_tensor_grad