language_model.py 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
23
24
from megatron import mpu
from megatron.module import MegatronModule

Mohammad's avatar
Mohammad committed
25
26
27
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import gelu
from megatron.model.utils import get_linear_layer
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
    # Parallel logits.
    input_parallel = mpu.copy_to_model_parallel_region(input_)
    # Matrix multiply.
    if bias is None:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight)
    else:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight, bias)
    # Gather if needed.
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
43
44
45
46
47
48
49
50

    return mpu.gather_from_model_parallel_region(logits_parallel)


def get_language_model(attention_mask_func, num_tokentypes, add_pooler,
                       init_method, scaled_init_method):
    """Build language model and return along with the key to save."""

51
52
53
    # Language model.
    language_model = TransformerLanguageModel(
        attention_mask_func=attention_mask_func,
Mohammad's avatar
Mohammad committed
54
55
56
        mlp_activation_func=gelu,
        init_method=init_method,
        output_layer_init_method=scaled_init_method,
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        num_tokentypes=num_tokentypes,
        add_pooler=add_pooler)
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key



class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)


    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
            vocab_size, self.hidden_size, init_method=self.init_method)
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)


    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
        self.init_method(self.tokentype_embeddings.weight)


    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        return embeddings


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
        if  self.num_tokentypes > 0:
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)



class TransformerLanguageModel(MegatronModule):
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        attention_mask_func: a function that takes `unmaksed-attention-scores`
            with size [b, np, s, s] and an `attention-mask` and will apply
            the masking. The function should return a masked score of the
            same size [b, np, s, s].
          masked-attention-scores = attention_mask_func(
                                     unmaksed-attention-scores, attention-mask)
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
    def __init__(self,
                 attention_mask_func,
Mohammad's avatar
Mohammad committed
265
266
267
                 mlp_activation_func,
                 init_method,
                 output_layer_init_method,
268
269
270
                 num_tokentypes=0,
                 add_pooler=False):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
271
        args = get_args()
272

Mohammad's avatar
Mohammad committed
273
        self.hidden_size = args.hidden_size
274
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
275
        self.init_method = init_method
276
277
278
279
        self.add_pooler = add_pooler

        # Embeddings
        self.embedding = Embedding(self.hidden_size,
Mohammad's avatar
Mohammad committed
280
281
282
                                   args.padded_vocab_size,
                                   args.max_position_embeddings,
                                   args.hidden_dropout,
283
284
285
286
287
288
                                   self.init_method,
                                   self.num_tokentypes)
        self._embedding_key = 'embedding'

        # Transformer
        self.transformer = ParallelTransformer(
Mohammad's avatar
Mohammad committed
289
290
            attention_mask_func, mlp_activation_func,
            self.init_method, output_layer_init_method)
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        self._transformer_key = 'transformer'

        # Pooler
        if self.add_pooler:
            self.pooler = Pooler(self.hidden_size, self.init_method)
            self._pooler_key = 'pooler'


    def forward(self, input_ids, position_ids, attention_mask,
                tokentype_ids=None, layer_past=None, get_key_value=False,
                pooling_sequence_index=0):

        # Embeddings.
        embedding_output = self.embedding(input_ids, position_ids,
                                          tokentype_ids=tokentype_ids)

        # Transformer.
        transformer_output = self.transformer(embedding_output,
                                              attention_mask,
                                              layer_past=layer_past,
                                              get_key_value=get_key_value)

        if self.add_pooler:
            pooled_output = self.pooler(transformer_output,
                                        pooling_sequence_index)
            return transformer_output, pooled_output

        return transformer_output


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._embedding_key] \
            = self.embedding.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        state_dict_[self._transformer_key] \
            = self.transformer.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
        if self.add_pooler:
            state_dict_[self._pooler_key] \
                = self.pooler.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)

        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
        if self._embedding_key in state_dict:
            state_dict_ = state_dict[self._embedding_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if '_embeddings' in key:
                    state_dict_[key] = state_dict[key]
        self.embedding.load_state_dict(state_dict_, strict=strict)

        # Transformer.
        if self._transformer_key in state_dict:
            state_dict_ = state_dict[self._transformer_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'transformer.' in key:
                    state_dict_[key.split('transformer.')[1]] = state_dict[key]
        self.transformer.load_state_dict(state_dict_, strict=strict)

        # Pooler.
        if self.add_pooler:
            assert 'pooler' in state_dict, \
                'could not find data for pooler in the checkpoint'
            self.pooler.load_state_dict(state_dict[self._pooler_key],
                                        strict=strict)