realm_index.py 6.67 KB
Newer Older
Neel Kant's avatar
Neel Kant committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from collections import defaultdict
import itertools
import os
import pickle
import shutil

import faiss
import numpy as np
import torch

from megatron import get_args, mpu


def detach(tensor):
    return tensor.detach().cpu().numpy()


class BlockData(object):
    """Serializable data structure for holding data for blocks -- embeddings and necessary metadata for REALM"""
    def __init__(self, block_data_path=None, rank=None):
        self.embed_data = dict()
        self.meta_data = dict()
        if block_data_path is None:
            args = get_args()
            block_data_path = args.block_data_path
            rank = args.rank
        self.block_data_path = block_data_path
        self.rank = rank

        block_data_name = os.path.splitext(self.block_data_path)[0]
        self.temp_dir_name = block_data_name + '_tmp'

    def state(self):
        return {
            'embed_data': self.embed_data,
            'meta_data': self.meta_data,
        }

    def clear(self):
        """Clear the embedding data structures to save memory.
        The metadata ends up getting used, and is also much smaller in dimensionality
        so it isn't really worth clearing.
        """
        self.embed_data = dict()

    @classmethod
    def load_from_file(cls, fname):
        print("\n> Unpickling BlockData", flush=True)
        state_dict = pickle.load(open(fname, 'rb'))
        print(">> Finished unpickling BlockData\n", flush=True)

        new_index = cls()
        new_index.embed_data = state_dict['embed_data']
        new_index.meta_data = state_dict['meta_data']
        return new_index

    def add_block_data(self, block_indices, block_embeds, block_metas, allow_overwrite=False):
        for idx, embed, meta in zip(block_indices, block_embeds, block_metas):
            if not allow_overwrite and idx in self.embed_data:
                raise ValueError("Unexpectedly tried to overwrite block data")

            self.embed_data[idx] = np.float16(embed)
            self.meta_data[idx] = meta

    def save_shard(self):
        if not os.path.isdir(self.temp_dir_name):
            os.makedirs(self.temp_dir_name, exist_ok=True)

        # save the data for each shard
        with open('{}/{}.pkl'.format(self.temp_dir_name, self.rank), 'wb') as data_file:
            pickle.dump(self.state(), data_file)

    def merge_shards_and_save(self):
        """Combine all the shards made using self.save_shard()"""
        shard_names = os.listdir(self.temp_dir_name)
        seen_own_shard = False

        for fname in os.listdir(self.temp_dir_name):
            shard_rank = int(os.path.splitext(fname)[0])
            if shard_rank == self.rank:
                seen_own_shard = True
                continue

            with open('{}/{}'.format(self.temp_dir_name, fname), 'rb') as f:
                data = pickle.load(f)
                old_size = len(self.embed_data)
                shard_size = len(data['embed_data'])

                # add the shard's data and check to make sure there is no overlap
                self.embed_data.update(data['embed_data'])
                self.meta_data.update(data['meta_data'])
                assert len(self.embed_data) == old_size + shard_size

        assert seen_own_shard

        # save the consolidated shards and remove temporary directory
        with open(self.block_data_path, 'wb') as final_file:
            pickle.dump(self.state(), final_file)
        shutil.rmtree(self.temp_dir_name, ignore_errors=True)

        print("Finished merging {} shards for a total of {} embeds".format(
            len(shard_names), len(self.embed_data)), flush=True)


class FaissMIPSIndex(object):
    """Wrapper object for a BlockData which similarity search via FAISS under the hood"""
    def __init__(self, index_type, embed_size, use_gpu=False):
        self.index_type = index_type
        self.embed_size = embed_size
        self.use_gpu = use_gpu
        self.id_map = dict()

        self.block_mips_index = None
        self._set_block_index()

    def _set_block_index(self):
        INDEX_TYPES = ['flat_ip']
        if self.index_type not in INDEX_TYPES:
            raise ValueError("Invalid index type specified")

        print("\n> Building index", flush=True)
        self.block_mips_index = faiss.index_factory(self.embed_size, 'Flat', faiss.METRIC_INNER_PRODUCT)

        if self.use_gpu:
            # create resources and config for GpuIndex
            res = faiss.StandardGpuResources()
            config = faiss.GpuIndexFlatConfig()
            config.device = torch.cuda.current_device()
            config.useFloat16 = True

            self.block_mips_index = faiss.GpuIndexFlat(res, self.block_mips_index, config)
            print(">>> Finished building index on GPU {}\n".format(self.block_mips_index.getDevice()), flush=True)
        else:
            # CPU index supports IDs so wrap with IDMap
            self.block_mips_index = faiss.IndexIDMap(self.block_mips_index)
            print(">> Finished building index\n", flush=True)

    def reset_index(self):
        """Delete existing index and create anew"""
        del self.block_mips_index
        self._set_block_index()

    def add_block_embed_data(self, all_block_data):
        """Add the embedding of each block to the underlying FAISS index"""
        block_indices, block_embeds = zip(*all_block_data.embed_data.items())
        if self.use_gpu:
            for i, idx in enumerate(block_indices):
                self.id_map[i] = idx

        all_block_data.clear()
        if self.use_gpu:
            self.block_mips_index.add(np.float32(np.array(block_embeds)))
        else:
            self.block_mips_index.add_with_ids(np.float32(np.array(block_embeds)), np.array(block_indices))

    def search_mips_index(self, query_embeds, top_k, reconstruct=True):
        """Get the top-k blocks by the index distance metric.

        :param reconstruct: if True: return a [num_queries x k x embed_dim] array of blocks
                            if False: return [num_queries x k] array of distances, and another for indices
        """
        query_embeds = np.float32(detach(query_embeds))

        with torch.no_grad():
            if reconstruct:
                top_k_block_embeds = self.block_mips_index.search_and_reconstruct(query_embeds, top_k)
                return top_k_block_embeds
            else:
                distances, block_indices = self.block_mips_index.search(query_embeds, top_k)
                if self.use_gpu:
                    fresh_indices = np.zeros(block_indices.shape)
                    for i, j in itertools.product(block_indices.shape):
                        fresh_indices[i, j] = self.id_map[block_indices[i, j]]
                    block_indices = fresh_indices
                return distances, block_indices