train_gpt_conv.py 3.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11

"""Train dialogue model based on GPT"""

import torch
from functools import partial
from megatron import get_args
from megatron import print_rank_0
from megatron import get_timers
from megatron import get_tokenizer
from megatron import mpu
# from megatron.data.gpt_dataset import build_train_valid_test_datasets
12
from dialogctrl.dialog_dataset import build_train_valid_test_datasets
13
14
15
from megatron.model import GPTModel
from megatron.training import pretrain
# from megatron.utils import get_ltor_masks_and_position_ids
16
from dialogctrl.utils import get_ltor_attention_masks_and_position_ids
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from megatron.utils import average_losses_across_data_parallel_group

def model_provider(pre_process=True, post_process=True):
    """Build the model."""

    print_rank_0('building GPT model ...')
    model = GPTModel(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
    return model


def get_batch(data_iterator):
    """Generate a batch"""
    args = get_args()
    tokenizer = get_tokenizer()

    # Items and their type.
    keys = ['text', 'loss_mask']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    loss_mask = data_b['loss_mask'].float()

    # Get the attention_mask and postition ids.
55
    attention_mask, position_ids = get_ltor_attention_masks_and_position_ids(tokens, tokenizer.eod_id)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    
    return tokens, labels, loss_mask, attention_mask, position_ids


def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()

    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
    """Forward step."""
    args = get_args()
    timers = get_timers()

    # Get the batch.
    timers('batch-generator').start()
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
        data_iterator)
    timers('batch-generator').stop()

    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)

    return output_tensor, partial(loss_func, loss_mask)


def train_valid_test_datasets_provider():
89
    """Build train, valid, and test datasets for dialog/control module"""
90
91
92
93
94
95
96
97
98
99
100
101
    args = get_args()

    print_rank_0('> building train, validation, and test datasets for %s module ...' % args.train_module)
    
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_folder=args.data_folder,
        dataset_name=args.dataset_name,
        train_module=args.train_module,
        max_seq_len=args.max_seq_len,
        seed=args.seed)
    print_rank_0("> finished creating datasets for %s module ..." % args.train_module)

102
103
    return train_ds, valid_ds, test_ds

104
105
106
107
108

if __name__ == "__main__":

    pretrain(train_valid_test_datasets_provider, model_provider, forward_step, 
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})