metrics.py 8.38 KB
Newer Older
root's avatar
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python

# Python version of the evaluation script from CoNLL'00-

# Intentional differences:
# - accept any space as delimiter by default
# - optional file argument (default STDIN)
# - option to set boundary (-b argument)
# - LaTeX output (-l argument) not supported
# - raw tags (-r argument) not supported

import sys
import re

from collections import defaultdict, namedtuple

ANY_SPACE = '<SPACE>'

class FormatError(Exception):
    pass

Metrics = namedtuple('Metrics', 'tp fp fn prec rec fscore')

class EvalCounts(object):
    def __init__(self):
        self.correct_chunk = 0    # number of correctly identified chunks
        self.correct_tags = 0     # number of correct chunk tags
        self.found_correct = 0    # number of chunks in corpus
        self.found_guessed = 0    # number of identified chunks
        self.token_counter = 0    # token counter (ignores sentence breaks)

        # counts by type
        self.t_correct_chunk = defaultdict(int)
        self.t_found_correct = defaultdict(int)
        self.t_found_guessed = defaultdict(int)

def parse_args(argv):
    import argparse
    parser = argparse.ArgumentParser(
        description='evaluate tagging results using CoNLL criteria',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    arg = parser.add_argument
    arg('-b', '--boundary', metavar='STR', default='-X-',
        help='sentence boundary')
    arg('-d', '--delimiter', metavar='CHAR', default=ANY_SPACE,
        help='character delimiting items in input')
    arg('-o', '--otag', metavar='CHAR', default='O',
        help='alternative outside tag')
    arg('file', nargs='?', default=None)
    return parser.parse_args(argv)

def parse_tag(t):
    m = re.match(r'^([^-]*)-(.*)$', t)
    return m.groups() if m else (t, '')

def evaluate(lines, options=None):
    if options is None:
        options = parse_args([])    # use defaults

    counts = EvalCounts()
    num_features = None       # number of features per line
    in_correct = False        # currently processed chunks is correct until now
    last_correct = 'O'        # previous chunk tag in corpus
    last_correct_type = ''    # type of previously identified chunk tag
    last_guessed = 'O'        # previously identified chunk tag
    last_guessed_type = ''    # type of previous chunk tag in corpus

    for line in lines:
        line = line.rstrip('\r\n')

        if options.delimiter == ANY_SPACE:
            features = line.split()
        else:
            features = line.split(options.delimiter)

        if num_features is None:
            num_features = len(features)
        elif num_features != len(features) and len(features) != 0:
            raise FormatError('unexpected number of features: %d (%d)' %
                              (len(features), num_features))

        if len(features) == 0 or features[0] == options.boundary:
            features = [options.boundary, 'O', 'O']
        if len(features) < 3:
            raise FormatError('unexpected number of features in line %s' % line)

        guessed, guessed_type = parse_tag(features.pop())
        correct, correct_type = parse_tag(features.pop())
        first_item = features.pop(0)

        if first_item == options.boundary:
            guessed = 'O'

        end_correct = end_of_chunk(last_correct, correct,
                                   last_correct_type, correct_type)
        end_guessed = end_of_chunk(last_guessed, guessed,
                                   last_guessed_type, guessed_type)
        start_correct = start_of_chunk(last_correct, correct,
                                       last_correct_type, correct_type)
        start_guessed = start_of_chunk(last_guessed, guessed,
                                       last_guessed_type, guessed_type)

        if in_correct:
            if (end_correct and end_guessed and
                last_guessed_type == last_correct_type):
                in_correct = False
                counts.correct_chunk += 1
                counts.t_correct_chunk[last_correct_type] += 1
            elif (end_correct != end_guessed or guessed_type != correct_type):
                in_correct = False

        if start_correct and start_guessed and guessed_type == correct_type:
            in_correct = True

        if start_correct:
            counts.found_correct += 1
            counts.t_found_correct[correct_type] += 1
        if start_guessed:
            counts.found_guessed += 1
            counts.t_found_guessed[guessed_type] += 1
        if first_item != options.boundary:
            if correct == guessed and guessed_type == correct_type:
                counts.correct_tags += 1
            counts.token_counter += 1

        last_guessed = guessed
        last_correct = correct
        last_guessed_type = guessed_type
        last_correct_type = correct_type

    if in_correct:
        counts.correct_chunk += 1
        counts.t_correct_chunk[last_correct_type] += 1

    return counts

def uniq(iterable):
  seen = set()
  return [i for i in iterable if not (i in seen or seen.add(i))]

def calculate_metrics(correct, guessed, total):
    tp, fp, fn = correct, guessed-correct, total-correct
    p = 0 if tp + fp == 0 else 1.*tp / (tp + fp)
    r = 0 if tp + fn == 0 else 1.*tp / (tp + fn)
    f = 0 if p + r == 0 else 2 * p * r / (p + r)
    return Metrics(tp, fp, fn, p, r, f)

def metrics(counts):
    c = counts
    overall = calculate_metrics(
        c.correct_chunk, c.found_guessed, c.found_correct
    )
    by_type = {}
    for t in uniq(list(c.t_found_correct) + list(c.t_found_guessed)):
        by_type[t] = calculate_metrics(
            c.t_correct_chunk[t], c.t_found_guessed[t], c.t_found_correct[t]
        )
    return overall, by_type

def report(counts, out=None):
    if out is None:
        out = sys.stdout

    overall, by_type = metrics(counts)

    c = counts
    # out.write('processed %d tokens with %d phrases; ' %
    #           (c.token_counter, c.found_correct))
    # out.write('found: %d phrases; correct: %d.\n' %
    #           (c.found_guessed, c.correct_chunk))

    results = {}
    if c.token_counter > 0:
        results["fb1"] = 100.*overall.fscore
    
    # comment it to not print details
    # for i, m in sorted(by_type.items()):
    #     print('%17s: ' % i)
    #     print('precision: %6.2f%%; recall: %6.2f%%; FB1: %6.2f  %d\n' % (100.*m.prec, 100.*m.rec, 100.*m.fscore, c.t_found_guessed[i]))

    return results

def end_of_chunk(prev_tag, tag, prev_type, type_):
    # check if a chunk ended between the previous and current word
    # arguments: previous and current chunk tags, previous and current types
    chunk_end = False

    if prev_tag == 'E': chunk_end = True
    if prev_tag == 'S': chunk_end = True

    if prev_tag == 'B' and tag == 'B': chunk_end = True
    if prev_tag == 'B' and tag == 'S': chunk_end = True
    if prev_tag == 'B' and tag == 'O': chunk_end = True
    if prev_tag == 'I' and tag == 'B': chunk_end = True
    if prev_tag == 'I' and tag == 'S': chunk_end = True
    if prev_tag == 'I' and tag == 'O': chunk_end = True

    if prev_tag != 'O' and prev_tag != '.' and prev_type != type_:
        chunk_end = True

    # these chunks are assumed to have length 1
    if prev_tag == ']': chunk_end = True
    if prev_tag == '[': chunk_end = True

    return chunk_end

def start_of_chunk(prev_tag, tag, prev_type, type_):
    # check if a chunk started between the previous and current word
    # arguments: previous and current chunk tags, previous and current types
    chunk_start = False

    if tag == 'B': chunk_start = True
    if tag == 'S': chunk_start = True

    if prev_tag == 'E' and tag == 'E': chunk_start = True
    if prev_tag == 'E' and tag == 'I': chunk_start = True
    if prev_tag == 'S' and tag == 'E': chunk_start = True
    if prev_tag == 'S' and tag == 'I': chunk_start = True
    if prev_tag == 'O' and tag == 'E': chunk_start = True
    if prev_tag == 'O' and tag == 'I': chunk_start = True

    if tag != 'O' and tag != '.' and prev_type != type_:
        chunk_start = True

    # these chunks are assumed to have length 1
    if tag == '[': chunk_start = True
    if tag == ']': chunk_start = True

    return chunk_start

def main(argv):
    args = parse_args(argv[1:])

    if args.file is None:
        counts = evaluate(sys.stdin, args)
    else:
        with open(args.file) as f:
            counts = evaluate(f, args)
    report(counts)

def conll2002_measure(lines, verbose=False):
    counts = evaluate(lines, None)
    return report(counts)