test_preprocess_mmdata.py 7.3 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

import os
import random
import sys
import tempfile

import nltk
import numpy

from megatron.core.datasets.indexed_dataset import IndexedDataset
from tests.unit_tests.data.test_preprocess_data import dummy_jsonl, gpt2_merge, gpt2_vocab
from tools.merge_datasets import main as merge_main
from tools.preprocess_mmdata import Encoder
from tools.preprocess_mmdata import get_args as build_args
from tools.preprocess_mmdata import main as build_main


def dummy_img(odir_txt, odir_img):
    for name in os.listdir(odir_txt):
        with open(os.path.join(odir_txt, name), "rt") as reader_txt:
            length = sum(1 for _ in reader_txt)
        os.makedirs(os.path.join(odir_img, os.path.splitext(name)[0]), exist_ok=False)
        for i in range(length):
            with open(
                os.path.join(odir_img, os.path.splitext(name)[0], f"{str(i).zfill(4)}.img"), "wb"
            ) as writer_img:
                # 32 * 32 - 1 to induce preprocessing 0-index padding
                writer_img.write(bytes([random.randint(0, 255) for _ in range(32 * 32 - 1)]))


def build_datasets(idir_txt, idir_img, odir, extra_args=[]):
    for name in os.listdir(idir_txt):
        sys.argv = [
            sys.argv[0],
            "--input",
            os.path.join(idir_txt, name),
            "--input-image",
            os.path.join(idir_img, os.path.splitext(name)[0]),
            "--output-prefix",
            os.path.join(odir, os.path.splitext(name)[0]),
        ] + extra_args
        build_main()


def merge_datasets(idir):
    sys.argv = [
        sys.argv[0],
        "--input",
        idir,
        "--output-prefix",
        os.path.join(idir, "merge"),
        "--multimodal",
    ]
    merge_main()


def do_test_preprocess_mmdata(temp_dir, extra_args=[]):
    # set the default nltk data path
    os.environ["NLTK_DATA"] = os.path.join(temp_dir, "nltk_data")
    nltk.data.path.append(os.environ["NLTK_DATA"])

    path_to_raws_txt = os.path.join(temp_dir, "sample_raws_txt")
    path_to_raws_img = os.path.join(temp_dir, "sample_raws_img")
    path_to_data = os.path.join(temp_dir, "sample_data")
    os.mkdir(path_to_raws_txt)
    os.mkdir(path_to_raws_img)
    os.mkdir(path_to_data)

    # create the dummy text resources
    dummy_jsonl(path_to_raws_txt)

    # create the dummy image resources
    dummy_img(path_to_raws_txt, path_to_raws_img)

    # build the datasets
    build_datasets(path_to_raws_txt, path_to_raws_img, path_to_data, extra_args=extra_args)

    # merge the datasets
    merge_datasets(path_to_data)

    sys.argv = [
        sys.argv[0],
        "--input",
        None,
        "--input-image",
        None,
        "--output-prefix",
        None,
    ] + extra_args
    encoder = Encoder(build_args())
    encoder.initializer()

    def tokens_to_string(toks):
        for option in ["decode", "detokenize"]:
            try:
                return getattr(encoder.tokenizer, option)(toks)
            except AttributeError:
                continue
        raise RuntimeError(f"{type(encoder.tokenizer)} tokenizer cannot `decode` or `detokenize`.")

    merged_index = 0
    merged_dataset = IndexedDataset(os.path.join(path_to_data, "merge"), multimodal=True)

    # sorted to ensure ordering matches merged dataset
    basenames = sorted(
        [
            name
            for name in os.listdir(path_to_data)
            if name.endswith(".idx") and not name.startswith("merge")
        ]
    )

    # index into the merged document index
    merged_doc_index_index = 0

    for basename in basenames:
        realpath_raw_txt = os.path.join(path_to_raws_txt, f"{os.path.splitext(basename)[0]}.jsonl")
        realpath_raw_img = os.path.join(path_to_raws_img, os.path.splitext(basename)[0])
        realpath_doc = os.path.join(path_to_data, os.path.splitext(basename)[0])

        dataset_index = 0
        dataset = IndexedDataset(realpath_doc, multimodal=True)

        merged_doc_idx = merged_dataset.document_indices[
            merged_doc_index_index : merged_doc_index_index + len(dataset.document_indices)
        ]
        merged_doc_idx = merged_doc_idx - merged_doc_idx[0]

        assert (
            dataset.document_indices == merged_doc_idx
        ).all(), f"ERROR: {basename.split('_')[:-2]}: merged dataset document indices mismatch"

        merged_doc_index_index += len(dataset.document_indices) - 1

        with open(realpath_raw_txt, "rt") as reader:
            for json_line, image_path in zip(
                reader,
                [
                    os.path.join(realpath_raw_img, basename)
                    for basename in os.listdir(realpath_raw_img)
                ],
            ):
                toks, image, length = encoder.encode((json_line, image_path))

                raw_text = tokens_to_string(toks)
                # reverse to account for preprocessing 0-index padding
                raw_image = image[::-1]

                processed_toks = dataset[dataset_index][0]
                assert dataset[dataset_index][1] == 0
                processed_text = tokens_to_string(processed_toks)

                processed_image = dataset[dataset_index + 1][0]
                assert dataset[dataset_index + 1][1] == 1
                # reverse to account for preprocessing 0-index padding
                processed_image = processed_image[::-1][0 : raw_image.size]

                assert (
                    raw_text == processed_text
                ), f"ERROR: {basename.split('_')[:-2]}: raw and processed documents (text) do not match"

                assert numpy.allclose(
                    raw_image, processed_image
                ), f"ERROR: {basename.split('_')[:-2]}: raw and processed documents (image) do not match"

                dataset_index += 2

                merged_toks = merged_dataset[merged_index][0]
                assert merged_dataset[merged_index][1] == 0
                merged_text = tokens_to_string(merged_toks)

                merged_image = merged_dataset[merged_index + 1][0]
                assert merged_dataset[merged_index + 1][1] == 1
                # reverse to account for preprocessing 0-index padding
                merged_image = merged_image[::-1][0 : raw_image.size]

                assert (
                    raw_text == merged_text
                ), f"ERROR: {basename.split('_')[:-2]}: raw and merged documents (text) do not match"

                assert numpy.allclose(
                    raw_image, merged_image
                ), f"ERROR: {basename.split('_')[:-2]}: raw and merged documents (image) do not match"

                merged_index += 2

        print(
            f"INFO: {''.join(basename.split('_')[:-2])}: raw, processed, and merged documents match!"
        )

    print("INFO: Success!")


def test_preprocess_mmdata():
    with tempfile.TemporaryDirectory() as temp_dir:

        # gpt specific args
        gpt_args = [
            "--pad-length",
            "1024",
            "--tokenizer-type",
            "GPT2BPETokenizer",
            "--vocab-file",
            gpt2_vocab(temp_dir),
            "--merge-file",
            gpt2_merge(temp_dir),
            "--append-eod",
            "--workers",
            "10",
            "--log-interval",
            "1",
        ]

        do_test_preprocess_mmdata(temp_dir, extra_args=gpt_args)


if __name__ == "__main__":
    test_preprocess_mmdata()