test_bin_reader.py 4.66 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import random
import sys
import tempfile
from types import ModuleType, SimpleNamespace
from typing import Any, Dict

import nltk
import pytest

try:
    import boto3
    import botocore.exceptions as exceptions
except ModuleNotFoundError:
    boto3 = ModuleType("boto3")
    sys.modules[boto3.__name__] = boto3
    exceptions = ModuleType("botocore.exceptions")
    sys.modules[exceptions.__name__] = exceptions

from megatron.core.datasets.indexed_dataset import (
    IndexedDataset,
    S3Config,
    _FileBinReader,
    _MMapBinReader,
    _S3BinReader,
)
from megatron.core.datasets.utils_s3 import S3_PREFIX, S3Client
from tests.unit_tests.data.test_preprocess_data import (
    build_datasets,
    dummy_jsonl,
    gpt2_merge,
    gpt2_vocab,
)

##
# Overload client from boto3
##


class _LocalClient(S3Client):
    """Local test client"""

    def __init__(self, *args: Any) -> None:
        pass

    def download_file(self, Bucket: str, Key: str, Filename: str) -> None:
        os.system(f"cp {os.path.join('/', Bucket, Key)} {Filename}")
        assert os.path.exists(Filename)

    def upload_file(self, Filename: str, Bucket: str, Key: str) -> None:
        raise NotImplementedError

    def head_object(self, Bucket: str, Key: str) -> Dict[str, Any]:
        assert os.path.exists(os.path.join("/", Bucket, Key))
        return {}

    def get_object(self, Bucket: str, Key: str, Range: str) -> Dict[str, Any]:
        _, _range = Range.split("=")
        _range_beg, _range_end = tuple(map(int, _range.split("-")))

        filename = os.path.join("/", Bucket, Key)

        with open(filename, mode='rb', buffering=0) as bin_buffer_file:
            bin_buffer_file.seek(_range_beg)
            _bytes = bin_buffer_file.read(_range_end - _range_beg)

        response = {"Body": SimpleNamespace(read=lambda: _bytes)}

        return response

    def close(self) -> None:
        pass


setattr(boto3, "client", _LocalClient)


##
# Overload ClientError from botocore.exceptions
##


class _LocalClientError(Exception):
    """ "Local test client error"""

    pass


setattr(exceptions, "ClientError", _LocalClientError)


@pytest.mark.flaky
@pytest.mark.flaky_in_dev
def test_bin_reader():
    with tempfile.TemporaryDirectory() as temp_dir:
        # set the default nltk data path
        os.environ["NLTK_DATA"] = os.path.join(temp_dir, "nltk_data")
        nltk.data.path.append(os.environ["NLTK_DATA"])

        path_to_raws = os.path.join(temp_dir, "sample_raws")
        path_to_data = os.path.join(temp_dir, "sample_data")
        path_to_s3_cache = os.path.join(temp_dir, "s3_cache")
        os.mkdir(path_to_raws)
        os.mkdir(path_to_data)
        os.mkdir(path_to_s3_cache)

        # create the dummy resources
        dummy_jsonl(path_to_raws)

        # build the datasets
        build_datasets(
            path_to_raws,
            path_to_data,
            extra_args=[
                "--tokenizer-type",
                "GPT2BPETokenizer",
                "--vocab-file",
                gpt2_vocab(temp_dir),
                "--merge-file",
                gpt2_merge(temp_dir),
                "--append-eod",
                "--workers",
                "10",
                "--log-interval",
                "1",
            ],
        )

        prefixes = set(
            [
                os.path.join(temp_dir, "sample_data", path.split(".")[0])
                for path in os.listdir(path_to_data)
                if path.endswith(".bin") or path.endswith(".idx")
            ]
        )

        for prefix in prefixes:
            indexed_dataset_file = IndexedDataset(prefix, multimodal=False, mmap=False)
            assert isinstance(indexed_dataset_file.bin_reader, _FileBinReader)

            indexed_dataset_mmap = IndexedDataset(prefix, multimodal=False, mmap=True)
            assert isinstance(indexed_dataset_mmap.bin_reader, _MMapBinReader)

            indexed_dataset_s3 = IndexedDataset(
                S3_PREFIX + prefix,
                multimodal=False,
                mmap=False,
                s3_config=S3Config(path_to_idx_cache=path_to_s3_cache),
            )
            assert isinstance(indexed_dataset_s3.bin_reader, _S3BinReader)

            assert len(indexed_dataset_s3) == len(indexed_dataset_file)
            assert len(indexed_dataset_s3) == len(indexed_dataset_mmap)

            indices = random.sample(
                list(range(len(indexed_dataset_s3))), min(100, len(indexed_dataset_s3))
            )

            for idx in indices:
                assert (indexed_dataset_s3[idx] == indexed_dataset_file[idx]).all()
                assert (indexed_dataset_s3[idx] == indexed_dataset_mmap[idx]).all()


if __name__ == "__main__":
    test_bin_reader()