eval_utils.py 3.5 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4
5

"""Evaluation utilities."""

import os
Vijay Korthikanti's avatar
Vijay Korthikanti committed
6
7
from functools import partial

8
import torch
Vijay Korthikanti's avatar
Vijay Korthikanti committed
9

xingjinliang's avatar
xingjinliang committed
10
11
from megatron.training import get_args
from megatron.training import print_rank_0, print_rank_last
12
from megatron.core import mpu
Vijay Korthikanti's avatar
Vijay Korthikanti committed
13
from megatron.schedules import get_forward_backward_func
14
15
16
17
18
19
20
21
22
from tasks.vision.finetune_utils import build_data_loader
from tasks.vision.finetune_utils import process_batch
from torchvision import datasets, transforms


def accuracy_func_provider():
    """Provide function that calculates accuracies."""
    args = get_args()
    data_path = args.data_path
23
    crop_size = (args.img_h, args.img_w)
24
25

    # Build dataloaders.
26
    val_data_path = data_path[1]
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    transform_val = transforms.Compose(
        [
            transforms.Resize(crop_size),
            transforms.CenterCrop(crop_size),
            transforms.ToTensor(),
            normalize,
        ]
    )
    dataset = datasets.ImageFolder(root=val_data_path, transform=transform_val)

    dataloader = build_data_loader(
        dataset,
        args.micro_batch_size,
        num_workers=args.num_workers,
        drop_last=(mpu.get_data_parallel_world_size() > 1),
43
        shuffle=False
44
45
46
47
48
49
    )

    def metrics_func(model, epoch):
        print_rank_0("calculating metrics ...")
        correct, total = calculate_correct_answers(model, dataloader, epoch)
        percent = float(correct) * 100.0 / float(total)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
        print_rank_last(
51
52
53
54
55
56
57
58
59
60
            " >> |epoch: {}| overall: correct / total = {} / {} = "
            "{:.4f} %".format(epoch, correct, total, percent)
        )

    return metrics_func


def calculate_correct_answers(model, dataloader, epoch):
    """Calculate correct over total answers"""

Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    forward_backward_func = get_forward_backward_func()
    for m in model:
        m.eval()

    def loss_func(labels, output_tensor):
        logits = output_tensor

        loss_dict = {}
        # Compute the correct answers.
        predicted = torch.argmax(logits, dim=-1)
        corrects = (predicted == labels).float()
        # Add to the counters.
        loss_dict['total'] = labels.size(0)
        loss_dict['correct'] = corrects.sum().item()

        return 0, loss_dict

    #defined inside to capture output_predictions
    def correct_answers_forward_step(batch, model):
        try:
            batch_ = next(batch)
xingjinliang's avatar
xingjinliang committed
82
        except Exception:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
83
84
85
86
87
88
89
90
            batch_ = batch
        images, labels = process_batch(batch_)

        # Forward model.
        output_tensor = model(images)

        return output_tensor, partial(loss_func, labels)

91
92
93
94
95
    with torch.no_grad():
        # For all the batches in the dataset.
        total = 0
        correct = 0
        for _, batch in enumerate(dataloader):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
96
97
98
99
100
101
102
103
104
105

            loss_dicts = forward_backward_func(correct_answers_forward_step, batch, model,
                                               optimizer=None, timers=None, forward_only=True)

            for loss_dict in loss_dicts:
                total += loss_dict['total']
                correct += loss_dict['correct']

    for m in model:
        m.train()
106
107

    # Reduce.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
108
109
110
111
    if mpu.is_pipeline_last_stage():
        unreduced = torch.cuda.LongTensor([correct, total])
        torch.distributed.all_reduce(unreduced,
                                     group=mpu.get_data_parallel_group())
112

Vijay Korthikanti's avatar
Vijay Korthikanti committed
113
114
115
116
        # Print on screen.
        correct_ans = unreduced[0].item()
        total_count = unreduced[1].item()
        return correct_ans, total_count