finetune.py 9.16 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
mpatwary's avatar
mpatwary committed
2
3
4
5

"""ORQA finetuning/evaluation."""

from functools import partial
Mostofa Patwary's avatar
Mostofa Patwary committed
6
import sys
mpatwary's avatar
mpatwary committed
7
8
9
10
11

import math
import torch
import torch.nn.functional as F

xingjinliang's avatar
xingjinliang committed
12
from megatron.training import get_args, get_timers, get_tokenizer, print_rank_0
13
from megatron.core import mpu
xingjinliang's avatar
xingjinliang committed
14
15
16
from megatron.legacy.indexer import IndexBuilder
from megatron.legacy.model.biencoder_model import biencoder_model_provider
from megatron.training.utils import average_losses_across_data_parallel_group
mpatwary's avatar
mpatwary committed
17
18
19
20
from pretrain_ict import get_group_world_size_rank
from tasks.finetune_utils import finetune
from tasks.orqa.supervised.eval_utils import accuracy_func_provider
from tasks.orqa.supervised.eval_utils import process_batch, task_collate_fn
Mostofa Patwary's avatar
Mostofa Patwary committed
21
from tasks.orqa.evaluate_utils import ORQAEvaluator
mpatwary's avatar
mpatwary committed
22

23
24
25
26
27
28
29
30
31
32
33
34
35
# input_ is a 2D tensor
def check_and_append_tensor_for_gather(group, rank, world_size, input_):

    # gather the size of the first dimension of the tensor from all ranks
    current_length = input_.size()[0]
    first_dim = torch.tensor([[current_length]], 
        device=torch.cuda.current_device())
    input_list = [torch.empty_like(first_dim) for _ in range(world_size)]
    input_list[rank].copy_(first_dim)
    torch.distributed.all_gather(input_list, first_dim, group=group)
    all_input_list = torch.cat(input_list, dim=0).contiguous()
    max_length = torch.max(all_input_list)

Mostofa Patwary's avatar
Mostofa Patwary committed
36
37
    # if the size are different than the max, extend the tensor
    # accordingly
38
39
40
41
42
43
44
    if max_length > current_length:
        padding=tuple([0] * (input_.dim() * 2 - 1)) + \
            tuple([max_length - current_length])
        input_ = F.pad(input=input_, pad=padding)

    return input_

Mostofa Patwary's avatar
Mostofa Patwary committed
45
def orqa(Dataset):
mpatwary's avatar
mpatwary committed
46
47
48
49
50
51
52

    def cross_entropy_forward_step(batch, model):
        """Simple forward step with cross-entropy loss."""
        timers = get_timers()
        tokenizer = get_tokenizer()

        # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
53
        timers('batch generator', log_level=2).start()
mpatwary's avatar
mpatwary committed
54
55
        try:
            batch_ = next(batch)
xingjinliang's avatar
xingjinliang committed
56
        except Exception:
mpatwary's avatar
mpatwary committed
57
58
            batch_ = batch

Mostofa Patwary's avatar
Mostofa Patwary committed
59
60
        group, rank, world_size = get_group_world_size_rank()

mpatwary's avatar
mpatwary committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        query_tokens, query_mask, query_types, query_pad_mask, \
        context_tokens, context_mask, context_types, context_pad_mask, \
        neg_context_tokens, neg_context_mask, neg_context_types, \
        reference = process_batch(batch_)

        timers('batch generator').stop()
        local_batch_size = query_tokens.shape[0]

        # Text representation of query and context
        query_list, context_list = [], []
        for i in range(local_batch_size):
            query_list.append(tokenizer.decode(query_tokens[i].tolist()))
            context_list.append(tokenizer.decode(context_tokens[i].tolist()))

Mostofa Patwary's avatar
Mostofa Patwary committed
75
76
77
78
79
80
81
        if neg_context_tokens is not None:
            neg_context_tokens = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_tokens)
            neg_context_mask = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_mask)
            neg_context_types = check_and_append_tensor_for_gather(group,
                rank, world_size, neg_context_types)
Mostofa Patwary's avatar
Mostofa Patwary committed
82

mpatwary's avatar
mpatwary committed
83
84
85
86
87
88
        if neg_context_tokens is not None:
            context_tokens = torch.cat([context_tokens, neg_context_tokens])
            context_mask = torch.cat([context_mask, neg_context_mask])
            context_types = torch.cat([context_types, neg_context_types])

        # Forward model.
Mostofa Patwary's avatar
Mostofa Patwary committed
89
90
        output_tensor = model(query_tokens, query_mask,
                                        query_types, context_tokens,
mpatwary's avatar
mpatwary committed
91
                                        context_mask, context_types)
Mostofa Patwary's avatar
Mostofa Patwary committed
92
        return output_tensor, partial(cross_entropy_loss_func, query_tokens, context_tokens)
mpatwary's avatar
mpatwary committed
93
94


Mostofa Patwary's avatar
Mostofa Patwary committed
95
96
    def cross_entropy_loss_func(query_tokens, context_tokens, output_tensor):
        args = get_args()
mpatwary's avatar
mpatwary committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

        local_batch_size = query_tokens.shape[0]
        group, rank, world_size = get_group_world_size_rank()
        # recall we assert that model_parallel_size == 1
        global_batch_size = world_size * local_batch_size

        query_logits, context_logits = output_tensor

        if world_size > 1:
            input_ = torch.empty_like(context_logits).copy_(\
                context_logits).detach_()
            tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
            tensor_list[rank].copy_(input_)
            torch.distributed.all_gather(tensor_list, input_, group=group)

            # Check if all-gather happens in order
            assert tensor_list[rank].sum().item() == \
                context_logits.sum().item()

            # Preserves the gradient
            tensor_list[rank] = context_logits
            all_context_logits = torch.cat(tensor_list, dim=0).contiguous()

            # Query tensors
            input_ = torch.empty_like(query_logits).copy_(\
                query_logits).detach_()
            tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
            tensor_list[rank].copy_(input_)
            torch.distributed.all_gather(tensor_list, input_, group=group)

            # Check if all-gather happens in order
            assert tensor_list[rank].sum().item() == query_logits.sum().item()

            # Preserves the gradient
            tensor_list[rank] = query_logits
            all_query_logits = torch.cat(tensor_list, dim=0).contiguous()
        else:
            all_query_logits = query_logits
            all_context_logits = context_logits

        retrieval_scores = torch.matmul(all_query_logits,
                            torch.transpose(all_context_logits, 0, 1))
        # Scaling the retrieval scores
        if args.retriever_score_scaling:
            retrieval_scores = retrieval_scores / math.sqrt(args.hidden_size)

        if args.train_with_neg:
            # if the world size is 3, local batch size is 4, and
            # local context size is 8, what we want is
            # labels = [0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19]
            labels = []
            local_context_size = context_tokens.shape[0]
            for i in range(world_size):
                j = i * local_context_size
                labels.extend(list(range(j, j + local_batch_size)))
            labels = torch.LongTensor(labels).cuda()
            assert len(labels) == global_batch_size
        else:
            labels = torch.arange(global_batch_size).long().cuda()

        # Cross-entropy loss.
        softmax_scores = F.log_softmax(retrieval_scores, dim=1)

        loss = F.nll_loss(softmax_scores, labels, reduction='mean')

        max_score, max_idxs = torch.max(softmax_scores, 1)
        correct_predictions_count = (max_idxs == labels).sum().float()

        # Reduce loss for logging.
        reduced_loss = average_losses_across_data_parallel_group([loss, \
            correct_predictions_count])

        # Loss scaling for correct losses in Supervised Retrieval
        loss = loss * mpu.get_data_parallel_world_size()

        return loss, {'lm loss': reduced_loss[0],
                      'correct_prediction_count': reduced_loss[1]}


    def train_valid_datasets_provider():
        """Build train and validation dataset."""
        args = get_args()
        tokenizer = get_tokenizer()

        train_dataset = Dataset('training',
                                args.train_data,
                                tokenizer,
                                args.retriever_seq_length,
                                evaluate=False)
        valid_dataset = Dataset('validation',
                                args.valid_data,
                                tokenizer,
                                args.retriever_seq_length,
                                evaluate=True)
        return train_dataset, valid_dataset

    def model_provider(pre_process=True, post_process=True):
        """Build the model."""
        args = get_args()
        print_rank_0('building retriever model for {} ...'.format(args.task))
Mostofa Patwary's avatar
Mostofa Patwary committed
197

198
        model = biencoder_model_provider(only_context_model=False,
Mostofa Patwary's avatar
Mostofa Patwary committed
199
                    only_query_model=False,
200
201
202
203
                    biencoder_shared_query_context_model=\
                    args.biencoder_shared_query_context_model,
                    pre_process=pre_process, post_process=post_process)

mpatwary's avatar
mpatwary committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        return model

    def single_dataset_provider(datapath):
        args = get_args()
        tokenizer = get_tokenizer()

        name = datapath[0].split('/')[-1].split('.')[0]
        return Dataset(name,
                       datapath,
                       tokenizer,
                       args.retriever_seq_length,
                       evaluate=True)

    def metrics_func_provider():
        """Provide metrics callback function."""
        return accuracy_func_provider(single_dataset_provider)

    """Finetune/evaluate."""
    finetune(train_valid_datasets_provider,
             model_provider,
             forward_step=cross_entropy_forward_step,
             end_of_epoch_callback_provider=metrics_func_provider,
             task_collate_fn=task_collate_fn)

def main():
    args = get_args()

Mostofa Patwary's avatar
Mostofa Patwary committed
231
232
233
234
235
    if args.task == 'RET-FINETUNE-NQ':
        from tasks.orqa.supervised.data import NQSupervisedDataset as Dataset
    else:
        raise NotImplementedError('ORQA task {} is not implemented.'.format(
            args.task))
Mostofa Patwary's avatar
Mostofa Patwary committed
236

Mostofa Patwary's avatar
Mostofa Patwary committed
237
    orqa(Dataset)
mpatwary's avatar
mpatwary committed
238