data.py 10.3 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
mpatwary's avatar
mpatwary committed
2
3
4
5
6
7
8
9
10
11
12

"""ORQA dataset."""

import json
import random
from abc import ABC
from abc import abstractmethod

import numpy as np
from torch.utils.data import Dataset

xingjinliang's avatar
xingjinliang committed
13
14
from megatron.training import print_rank_0, get_args
from megatron.legacy.data.biencoder_dataset_utils import make_attention_mask
mpatwary's avatar
mpatwary committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

def build_token_types_from_context_list(ctx_list, tokenizer, max_seq_length):
    ctx_id_list, ctx_types_list = [], []
    for context in ctx_list:
        title_ids = tokenizer.tokenize(context['title'])
        ctx_ids = tokenizer.tokenize(context['text'])
        ctx_ids = title_ids + [tokenizer.sep_id] + ctx_ids

        ctx_ids, ctx_types, _ = build_tokens_types_paddings_from_ids(ctx_ids,
                                    max_seq_length, tokenizer.cls,
                                    tokenizer.sep, tokenizer.pad)
        ctx_id_list.append(ctx_ids)
        ctx_types_list.append(ctx_types)

    return ctx_id_list, ctx_types_list


def build_tokens_types_paddings_from_text(query, context,
                                          tokenizer, max_seq_length):
    """Build token types and paddings, trim if needed, and pad if needed."""

    query_ids = tokenizer.tokenize(query)
    query_ids, query_types, query_pad_mask = \
        build_tokens_types_paddings_from_ids(query_ids, max_seq_length, \
            tokenizer.cls, tokenizer.sep, tokenizer.pad)

    # Appending the title of the context at front
    extended_ctx_ids = None
    if context is not None:
        title_ids = tokenizer.tokenize(context['title'])
        ctx_ids = tokenizer.tokenize(context['text'])
        extended_ctx_ids = title_ids + [tokenizer.sep] + ctx_ids

    ctx_ids, ctx_types, ctx_pad_mask = \
        build_tokens_types_paddings_from_ids(extended_ctx_ids,
            max_seq_length, tokenizer.cls, tokenizer.sep, tokenizer.pad)

    return query_ids, query_types, query_pad_mask, \
           ctx_ids, ctx_types, ctx_pad_mask


# Similar code tasks/data_utils with some changes
def build_tokens_types_paddings_from_ids(text_ids, max_seq_length,
                                         cls_id, sep_id, pad_id):
    """Build token types and paddings, trim if needed, and pad if needed."""
    enc_ids = []
    tokentypes_enc = []

    # [CLS].
    enc_ids.append(cls_id)
    tokentypes_enc.append(0)

    # A.
    len_src = len(text_ids)
    enc_ids.extend(text_ids)
    tokentypes_enc.extend([0] * len_src)

    # Cap the size.
    if len(enc_ids) > max_seq_length - 1:
        enc_ids = enc_ids[0: max_seq_length - 1]
        tokentypes_enc = tokentypes_enc[0: max_seq_length - 1]

    # [SEP].
    enc_ids.append(sep_id)
    tokentypes_enc.append(0)

    num_tokens_enc = len(enc_ids)
    # Padding.
    padding_length = max_seq_length - len(enc_ids)
    if padding_length > 0:
        enc_ids.extend([pad_id] * padding_length)
        tokentypes_enc.extend([pad_id] * padding_length)

    pad_mask = ([1] * num_tokens_enc) + ([0] * padding_length)
    pad_mask = np.array(pad_mask, dtype=np.int64)

    return enc_ids, tokentypes_enc, pad_mask


Mostofa Patwary's avatar
Mostofa Patwary committed
94
def build_sample(query_ids, query_types, query_pad_mask,
mpatwary's avatar
mpatwary committed
95
                ctx_ids, ctx_types, ctx_pad_mask, answers,
Mostofa Patwary's avatar
Mostofa Patwary committed
96
                neg_ctx_id_list=None, neg_ctx_types_list=None,
mpatwary's avatar
mpatwary committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                include_neg=False):
    """Convert to numpy and return a sample consumed by the batch producer."""

    query_ids = np.array(query_ids, dtype=np.int64)
    query_types = np.array(query_types, dtype=np.int64)
    query_mask = make_attention_mask(query_ids, query_ids)

    ctx_ids = np.array(ctx_ids, dtype=np.int64)
    ctx_types = np.array(ctx_types, dtype=np.int64)
    ctx_mask = make_attention_mask(ctx_ids, ctx_ids)

    sample = ({
        'query': query_ids,
        'query_mask': query_mask,
        'query_types': query_types,
        'query_pad_mask': query_pad_mask,
        'context': ctx_ids,
        'context_mask': ctx_mask,
        'context_types': ctx_types,
        'context_pad_mask': ctx_pad_mask,
        'reference': answers
    })

    if include_neg:
        neg_ctx_ids = np.array(neg_ctx_id_list, dtype=np.int64)
        neg_ctx_id_types = np.array(neg_ctx_types_list, dtype=np.int64)
        neg_ctx_mask = np.array([make_attention_mask(ids, ids) \
            for ids in neg_ctx_ids], dtype=np.int64)

        sample['neg_context'] = neg_ctx_ids
        sample['neg_context_types'] = neg_ctx_id_types
        sample['neg_context_mask'] = neg_ctx_mask

    return sample


class OpenRetrievalAbstractDataset(ABC, Dataset):
    """Open Retrieval base dataset class."""

    def __init__(self, task_name, dataset_name, datapaths, tokenizer, \
                max_seq_length, evaluate=False):
        # Store inputs.
        args = get_args()
        self.evaluate = evaluate
        self.val_av_rank_hard_neg = args.val_av_rank_hard_neg
        self.val_av_rank_other_neg = args.val_av_rank_other_neg
        self.train_with_neg = args.train_with_neg
        self.train_hard_neg = args.train_hard_neg

        self.task_name = task_name
        self.dataset_name = dataset_name
        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        print_rank_0(' > building {} dataset for {}:'.format(self.task_name,
                                                             self.dataset_name))
        # Process the files.
        string = '  > paths:'
        for path in datapaths:
            string += ' ' + path
        print_rank_0(string)
        self.samples = []
        for datapath in datapaths:
            self.samples.extend(self.process_samples_from_single_path(datapath))

        args = get_args()
        if args.sample_rate < 1:  # subsample
            k = int(len(self.samples) * args.sample_rate)
            self.samples = random.sample(self.samples, k)

        print_rank_0('  >> total number of samples: {}'.format(
            len(self.samples)))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        raw_sample = self.samples[idx]

        query_ids, query_types, query_pad_mask, ctx_ids, ctx_types, \
            ctx_pad_mask = build_tokens_types_paddings_from_text( \
                raw_sample['question'], raw_sample['pos_context'], \
                self.tokenizer, self.max_seq_length)

        if self.evaluate:
            neg_ctx_list = \
                raw_sample['negative_context'][:self.val_av_rank_other_neg] + \
                raw_sample['hard_negative_context'][:self.val_av_rank_hard_neg]
            neg_ctx_id_list, neg_ctx_types_list = \
                build_token_types_from_context_list(neg_ctx_list, \
                    self.tokenizer, self.max_seq_length)

        elif self.train_with_neg:
            hard_negative_ctx = raw_sample['hard_negative_context']
            negative_ctx = raw_sample['negative_context']
            if True:  # TODO: fix this or remove this condition
                random.shuffle(hard_negative_ctx)
                random.shuffle(negative_ctx)

            neg_ctx_list = hard_negative_ctx[:self.train_hard_neg]
            # In the Google NQ dataset by DPR paper, there are around more than
            # 50 missing hard negatives in training data.
            # In those cases, substitute hard negatives by simple negatives.
            if len(neg_ctx_list) < self.train_hard_neg:
                neg_ctx_list += negative_ctx[:self.train_hard_neg - \
                    len(neg_ctx_list)]

            neg_ctx_id_list, neg_ctx_types_list = \
                build_token_types_from_context_list(neg_ctx_list,
                    self.tokenizer, self.max_seq_length)
        else:
            neg_ctx_id_list = None
            neg_ctx_types_list = None

        sample = build_sample(query_ids, query_types, query_pad_mask,
                              ctx_ids, ctx_types, ctx_pad_mask,
                              raw_sample['answers'],
                              neg_ctx_id_list, neg_ctx_types_list,
                              include_neg=self.evaluate or self.train_with_neg)

        return sample

    @staticmethod
    @abstractmethod
    def process_samples_from_single_path(filename):
        """Abstract method that takes a filename and
        returns a list of dataset samples, each sample being a dict of
            {'text': string, 'text': string}
        """
        pass



def normalize_question(question):
    if question[-1] == '?':
        question = question[:-1]
    return question

Mostofa Patwary's avatar
Mostofa Patwary committed
234
235
236
# The following class reads the datasets for training retriever as
# prepared by the DPR codebase (https://github.com/facebookresearch/DPR)

mpatwary's avatar
mpatwary committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class NQSupervisedDataset(OpenRetrievalAbstractDataset):

    def __init__(self, name, datapaths, tokenizer, max_seq_length, \
                evaluate=False):
        super().__init__('natural_questions_ret',
                         name,
                         datapaths,
                         tokenizer,
                         max_seq_length,
                         evaluate=evaluate)

    @staticmethod
    def process_samples_from_single_path(filename):
        """"Implement abstract method."""
        print_rank_0(' > Processing {} ...'.format(filename))
        samples = []
        total = 0

        with open(filename, 'r', encoding="utf-8") as f:
            data = json.load(f)
            for row in data:
                question = normalize_question(row['question'])
                pos_context = row['positive_ctxs'][0]

                # Hard Negative Contexts
                if len(row['hard_negative_ctxs']) > 0:
                    hard_neg_context = row['hard_negative_ctxs']
                else:
                    hard_neg_context = []

                # Negative Contexts
                if len(row['negative_ctxs']) > 0:
                    neg_context = row['negative_ctxs']
                else:
                    neg_context = []

                answers = row['answers']
                sample = {'question': question,
                          'pos_context': pos_context,
                          'hard_negative_context': hard_neg_context,
                          'negative_context': neg_context,
                          'answers': answers}
                total += 1
                samples.append(sample)

                if total % 5000 == 0:
                    print_rank_0('  > processed {} so far ...'.format(total))

        print_rank_0(' >> processed {} samples.'.format(len(samples)))
        return samples