utils.py 52 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
2
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

3
"""Utility functions used throughout Megatron core"""
xingjinliang's avatar
xingjinliang committed
4
5
6
import array
import hashlib
import logging
liangjing's avatar
v1  
liangjing committed
7
import math
8
import operator
xingjinliang's avatar
xingjinliang committed
9
10
11
12
13
14
15
16
import queue
import socket
import sys
import threading
import time
import traceback
from dataclasses import dataclass
from datetime import datetime
liangjing's avatar
v1  
liangjing committed
17
from functools import reduce
xingjinliang's avatar
xingjinliang committed
18
19
20
from importlib.metadata import version
from types import TracebackType
from typing import Any, Dict, List, Optional, Tuple, Type, Union
21

22
import torch
xingjinliang's avatar
xingjinliang committed
23
24
25
26
27
28
29
30
from packaging.version import Version as PkgVersion

try:
    from torch.distributed._tensor import DTensor

    HAVE_DTENSOR = True
except ImportError:
    HAVE_DTENSOR = False
31
32

from megatron.core import parallel_state
liangjing's avatar
v1  
liangjing committed
33
from megatron.core.dist_checkpointing.mapping import ShardedTensor
34

xingjinliang's avatar
xingjinliang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
logger = logging.getLogger(__name__)


try:
    _torch_version = PkgVersion(torch.__version__)
except:
    # This is a WAR for building docs, where torch is not actually imported
    _torch_version = PkgVersion("0.0.0")
_te_version = None


def get_torch_version():
    """Get pytorch version from __version__; if not available use pip's. Use caching."""

    def get_torch_version_str():
        import torch

        if hasattr(torch, '__version__'):
            return str(torch.__version__)
        else:
            return version("torch")

    global _torch_version
    if _torch_version is None:
        _torch_version = PkgVersion(get_torch_version_str())
    return _torch_version


def get_te_version():
    """Get TE version from __version__; if not available use pip's. Use caching."""

    def get_te_version_str():
        import transformer_engine as te

        if hasattr(te, '__version__'):
            return str(te.__version__)
        else:
            return version("transformer-engine")

    global _te_version
    if _te_version is None:
        _te_version = PkgVersion(get_te_version_str())
    return _te_version


def is_te_min_version(version, check_equality=True):
    """Check if minimum version of `transformer-engine` is installed."""
    if check_equality:
        return get_te_version() >= PkgVersion(version)
    return get_te_version() > PkgVersion(version)


def get_torch_version():
    """Get torch version from __version__."""

    global _torch_version
    return _torch_version


def is_torch_min_version(version, check_equality=True):
    """Check if minimum version of `torch` is installed."""
    if check_equality:
        return get_torch_version() >= PkgVersion(version)
    return get_torch_version() > PkgVersion(version)

100
101
102

def ensure_divisibility(numerator, denominator):
    """Ensure that numerator is divisible by the denominator."""
liangjing's avatar
v1  
liangjing committed
103
    assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)
104
105
106
107
108
109
110
111


def divide(numerator, denominator):
    """Ensure that numerator is divisible by the denominator and return
    the division value."""
    ensure_divisibility(numerator, denominator)
    return numerator // denominator

liangjing's avatar
v1  
liangjing committed
112

xingjinliang's avatar
xingjinliang committed
113
114
115
116
def get_attr_wrapped_model(model, attr, allow_none=True, return_model_obj=False):
    """Get an attribute from a wrapped model.
    If return_model_obj is true, return the object that has the 'attr' attribute;
    otherwise, return the attribute directly."""
117
118
119
    if isinstance(model, list):
        raise RuntimeError("_get_attr_wrapped_model given a list of models")

liangjing's avatar
v1  
liangjing committed
120
121
122
123
124
125
126
127
128
129
130
    if allow_none:

        def condition(model, attr):
            return not hasattr(model, attr)

    else:

        def condition(model, attr):
            return getattr(model, attr, None) is None

    while condition(model, attr):
131
132
133
134
        if not hasattr(model, "module"):
            raise RuntimeError(f"_get_attr_wrapped_model couldn't find attribute {attr}")

        model = model.module
xingjinliang's avatar
xingjinliang committed
135
136
137

    if return_model_obj:
        return model
138
139
    return getattr(model, attr)

liangjing's avatar
v1  
liangjing committed
140

141
def get_model_type(model):
xingjinliang's avatar
xingjinliang committed
142
    """Returns model_type attribute"""
143
144
    return get_attr_wrapped_model(model, 'model_type')

145

xingjinliang's avatar
xingjinliang committed
146
147
148
149
150
151
152
153
def get_model_xattn(model):
    """Returns whether the model has the xattn_needed attribute"""
    try:
        return get_attr_wrapped_model(model, 'xattn_needed')
    except RuntimeError:
        return False


liangjing's avatar
v1  
liangjing committed
154
def get_model_config(model):
xingjinliang's avatar
xingjinliang committed
155
    """Returns the config attribute, allowed to return None"""
liangjing's avatar
v1  
liangjing committed
156
157
158
    return get_attr_wrapped_model(model, 'config', allow_none=False)


159
160
161
162
163
164
165
166
167
class GlobalMemoryBuffer:
    """Global buffer to avoid dynamic memory allocations.
    Caller should ensure that buffers of the same name
    are not used concurrently."""

    def __init__(self):
        self.buffer = {}

    def get_tensor(self, tensor_shape, dtype, name):
xingjinliang's avatar
xingjinliang committed
168
169
170
        """
        Returns (potentially) a sub-tensor from the self.buffer for the given shape.
        """
171
        required_len = reduce(operator.mul, tensor_shape, 1)
liangjing's avatar
v1  
liangjing committed
172
173
174
175
176
177
178
        if (
            self.buffer.get((name, dtype), None) is None
            or self.buffer[(name, dtype)].numel() < required_len
        ):
            self.buffer[(name, dtype)] = torch.empty(
                required_len, dtype=dtype, device=torch.cuda.current_device(), requires_grad=False
            )
179
180
181

        return self.buffer[(name, dtype)][0:required_len].view(*tensor_shape)

liangjing's avatar
v1  
liangjing committed
182

183
def _kernel_make_viewless_tensor(inp, requires_grad):
xingjinliang's avatar
xingjinliang committed
184
    """Make a viewless tensor.
185
186
187
188
189
190

    View tensors have the undesirable side-affect of retaining a reference
    to the originally-viewed tensor, even after manually setting the '.data'
    field. This method creates a new tensor that links to the old tensor's
    data, without linking the viewed tensor, referenced via the '._base'
    field.
xingjinliang's avatar
xingjinliang committed
191
192
    """
    out = torch.empty((1,), dtype=inp.dtype, device=inp.device, requires_grad=requires_grad)
193
194
195
    out.data = inp.data
    return out

liangjing's avatar
v1  
liangjing committed
196

197
class MakeViewlessTensor(torch.autograd.Function):
xingjinliang's avatar
xingjinliang committed
198
    """
199
200
201
202
203
204
    Autograd function to make a viewless tensor.

    This function should be used in cases where the computation graph needs
    to be propagated, but we only want a viewless tensor (e.g.,
    ParallelTransformer's hidden_states). Call this function by passing
    'keep_graph = True' to 'make_viewless_tensor()'.
xingjinliang's avatar
xingjinliang committed
205
    """
liangjing's avatar
v1  
liangjing committed
206

207
208
    @staticmethod
    def forward(ctx, inp, requires_grad):
xingjinliang's avatar
xingjinliang committed
209
        """Runs the fwd pass of _kernel_make_viewless_tensor"""
210
        return _kernel_make_viewless_tensor(inp, requires_grad)
liangjing's avatar
v1  
liangjing committed
211

212
213
    @staticmethod
    def backward(ctx, grad_output):
xingjinliang's avatar
xingjinliang committed
214
        """No-op"""
215
216
        return grad_output, None

liangjing's avatar
v1  
liangjing committed
217

218
def make_viewless_tensor(inp, requires_grad, keep_graph):
xingjinliang's avatar
xingjinliang committed
219
    """
220
221
222
223
224
225
    Entry-point for creating viewless tensors.

    This method should be used, rather than calling 'MakeViewlessTensor'
    or '_kernel_make_viewless_tensor' directly. This method acts as a
    switch for determining if an autograd function or a regular method
    should be used to create the tensor.
xingjinliang's avatar
xingjinliang committed
226
    """
227
228
229
230
231
232
233
234
235
236
237

    # return tensor as-is, if not a 'view'
    if inp._base is None:
        return inp

    # create viewless tensor
    if keep_graph:
        return MakeViewlessTensor.apply(inp, requires_grad)
    else:
        return _kernel_make_viewless_tensor(inp, requires_grad)

liangjing's avatar
v1  
liangjing committed
238
239

def assert_viewless_tensor(tensor, extra_msg=None):
xingjinliang's avatar
xingjinliang committed
240
241
    """Assert that a tensor is not a view (i.e., its '._base' field is
    not set)."""
242
    if isinstance(tensor, list):
liangjing's avatar
v1  
liangjing committed
243
        [assert_viewless_tensor(t) for t in tensor]
244
245
246
247
248
249
        return tensor
    if not isinstance(tensor, torch.Tensor):
        return tensor
    assert tensor._base is None, (
        "Ensure tensor._base is None before setting tensor.data or storing "
        "tensor to memory buffer. Otherwise, a memory leak will occur (and "
xingjinliang's avatar
xingjinliang committed
250
251
        f"likely accumulate over iterations). {extra_msg}"
    )
252
253
    return tensor

liangjing's avatar
v1  
liangjing committed
254

255
def safely_set_viewless_tensor_data(tensor, new_data_tensor):
xingjinliang's avatar
xingjinliang committed
256
    """Safely set tensor's '.data' field.
257
258
259

    Check first that the tensor is viewless (i.e., '._base' not set). If not,
    raise an exception.
xingjinliang's avatar
xingjinliang committed
260
    """
liangjing's avatar
v1  
liangjing committed
261
262
263
264
265
    assert_viewless_tensor(
        tensor,
        extra_msg="FYI, tensor._base has shape %s, and new_data_tensor has shape %s."
        % ("--" if tensor._base is None else tensor._base.shape, new_data_tensor.shape),
    )
266
    tensor.data = new_data_tensor
liangjing's avatar
v1  
liangjing committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287


def init_method_normal(sigma):
    """Init method based on N(0, sigma)."""

    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)

    return init_


def scaled_init_method_normal(sigma, num_layers):
    """Init method based on N(0, sigma/sqrt(2*num_layers)."""
    std = sigma / math.sqrt(2.0 * num_layers)

    def init_(tensor):
        return torch.nn.init.normal_(tensor, mean=0.0, std=std)

    return init_


xingjinliang's avatar
xingjinliang committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def log_single_rank(logger: logging.Logger, *args: Any, rank: int = 0, **kwargs: Any):
    """If torch distributed is initialized, log only on rank

    Args:
        logger (logging.Logger): The logger to write the logs

        args (Tuple[Any]): All logging.Logger.log positional arguments

        rank (int, optional): The rank to write on. Defaults to 0.

        kwargs (Dict[str, Any]): All logging.Logger.log keyword arguments
    """
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == rank:
            logger.log(*args, **kwargs)
    else:
        logger.log(*args, **kwargs)


def log_on_each_pipeline_stage(logger: logging.Logger, *args: Any, **kwargs: Any):
    """Log on first rank in each pipeline stage

    Args:
        logger (logging.Logger): The logger to write the logs

        args (Tuple[Any]): All logging.Logger.log positional arguments

        kwargs (Dict[str, Any]): All logging.Logger.log keyword arguments
    """
    assert torch.distributed.is_initialized()

    if (
        parallel_state.get_data_parallel_rank(with_context_parallel=True) == 0
        and parallel_state.get_tensor_model_parallel_rank() == 0
    ):
        logger.log(*args, **kwargs)


def check_param_hashes_across_dp_replicas(
    model: List[torch.nn.Module], cross_check: bool = False
) -> bool:
    """Computes hashes of all parameters in model, all-gathers hashes across DP replicas,
    and then checks for equality between the locally-computed hashes and those of other ranks.

    NOTE: This function computes SHA-1 hashes on the CPU and thus needs to move all param
    tensors from GPU to CPU first; as a result, this function is not intended to be called
    very frequently in the main training loop.

    Args:
        model (List[torch.nn.Module]): List of model chunks whose parameter hashes need to
            be checked.
        cross_check (bool): If true, will check whether hashes match across all DP replicas.

    Returns:
        True if all param hashes match with corresponding hash on DP replica 0 or
        across all replicas if cross_check is enabled, False otherwise.
    """

    # Compute per-parameter hashes on this rank.
    # Keep track of expert and non-expert parameters separately since they need to be
    # all-gathered across different sets of ranks.
    non_expert_params, expert_params = [], []
    local_non_expert_param_hashes, local_expert_param_hashes = [], []
    for model_chunk_id, model_chunk in enumerate(model):
        for param_name, param in model_chunk.named_parameters():
            param_hash = torch.frombuffer(
                array.array(
                    'B', hashlib.sha1(param.data.to("cpu").float().numpy(force=True)).digest()
                ),
                dtype=torch.uint8,
            )
            if getattr(param, 'allreduce', True):
                non_expert_params.append((model_chunk_id, param_name, param))
                local_non_expert_param_hashes.append(param_hash)
            else:
                expert_params.append((model_chunk_id, param_name, param))
                local_expert_param_hashes.append(param_hash)

    # Use data-modulo-expert parallel group to all-gather expert param hashes, regular
    # data-parallel group for non-expert param hashes.
    all_param_hashes_match = True
    for params, local_param_hashes, all_gather_group in zip(
        [non_expert_params, expert_params],
        [local_non_expert_param_hashes, local_expert_param_hashes],
        [
            parallel_state.get_data_parallel_group_gloo(),
            parallel_state.get_expert_data_parallel_group_gloo(),
        ],
    ):
        # Collect per-parameter hashes across all ranks in group.
        assert len(params) == len(local_param_hashes)
        if len(params) == 0:
            continue
        local_param_hashes = torch.stack(local_param_hashes)
        all_param_hashes = [
            torch.zeros_like(local_param_hashes)
            for _ in range(torch.distributed.get_world_size(all_gather_group))
        ]
        torch.distributed.all_gather(all_param_hashes, local_param_hashes, group=all_gather_group)

        # Make sure local per-parameter hash matches DP rank 0.
        param_hashes_match = torch.equal(local_param_hashes, all_param_hashes[0])
        if not param_hashes_match:
            for i, (model_chunk_id, param_name, param) in enumerate(params):
                if not torch.equal(local_param_hashes[i], all_param_hashes[0][i]):
                    rank = torch.distributed.get_rank()
                    logger.info(
                        f"[Rank {rank}] Hash not matching for {param_name} in model chunk"
                        f"{model_chunk_id}"
                    )
        if cross_check:
            # Make sure all ranks have the same hash.
            all_param_hashes_match &= all(
                map(lambda x: torch.equal(local_param_hashes, x), all_param_hashes)
            )
        else:
            all_param_hashes_match &= param_hashes_match

    return all_param_hashes_match


def make_tp_sharded_tensor_for_checkpoint(
    tensor, key, tp_axis=0, replica_id=None, prepend_offsets=(), **kwargs
):
    """Helper for instantiating a ShardedTensor where the `tp_axis` dimension
    is sharded across TP group.

    Optionally, can provide offsets which prepend new dimensions to the tensor.
    """
    prepend_axis_num = len(prepend_offsets)

    new_offsets = []
    tp_rank = parallel_state.get_tensor_model_parallel_rank()
    dp_rank = parallel_state.get_data_parallel_rank(with_context_parallel=True)
    tp_size = parallel_state.get_tensor_model_parallel_world_size()
    dp_size = parallel_state.get_data_parallel_world_size(with_context_parallel=True)
    dp_replica_id = parallel_state.get_data_parallel_rank(with_context_parallel=True)

    new_offsets.append((tp_axis + prepend_axis_num, tp_rank, tp_size))

    if HAVE_DTENSOR and isinstance(tensor, DTensor):
        # TP + FSDP2 sharding
        dp_replica_id = 0
        tensor = tensor._local_tensor

        if tp_axis == 0:
            # both FSDP2 and TP shards axis 0
            # default MCore uses tp-cp-ep-dp-pp
            # FSDP2 is compatibile with TP, CP
            new_offsets[0] = (prepend_axis_num, tp_rank * dp_size + dp_rank, tp_size * dp_size)
        else:
            # FSDP2 shards axis 0 and TP shards some other axis
            new_offsets.append((prepend_axis_num, dp_rank, dp_size))

    if replica_id is None:
        replica_id = (0, 0, dp_replica_id)
liangjing's avatar
v1  
liangjing committed
444
445
446
447

    return ShardedTensor.from_rank_offsets(
        key,
        tensor,
xingjinliang's avatar
xingjinliang committed
448
449
450
451
        *prepend_offsets,
        *new_offsets,
        replica_id=replica_id,
        prepend_axis_num=prepend_axis_num,
liangjing's avatar
v1  
liangjing committed
452
453
454
455
        **kwargs,
    )


xingjinliang's avatar
xingjinliang committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
def make_sharded_tensor_for_checkpoint(tensor, key, prepend_offsets=(), replica_id=None, **kwargs):
    """Helper for instantiating a non-sharded ShardedTensor (replicated across TP and DP group).

    Optionally, can provide offsets which prepend new dimensions to the tensor.
    """

    prepend_axis_num = len(prepend_offsets)

    new_offsets = []
    dp_rank = parallel_state.get_data_parallel_rank(with_context_parallel=True)
    dp_size = parallel_state.get_data_parallel_world_size(with_context_parallel=True)
    dp_replica_id = parallel_state.get_data_parallel_rank(with_context_parallel=True)

    if HAVE_DTENSOR and isinstance(tensor, DTensor):
        # FSDP2 sharding
        dp_replica_id = 0
        tensor = tensor._local_tensor
        new_offsets.append((prepend_axis_num, dp_rank, dp_size))

    if replica_id is None:
        replica_id = (0, parallel_state.get_tensor_model_parallel_rank(), dp_replica_id)
liangjing's avatar
v1  
liangjing committed
477
478
479
480

    return ShardedTensor.from_rank_offsets(
        key,
        tensor,
xingjinliang's avatar
xingjinliang committed
481
482
483
484
        *prepend_offsets,
        *new_offsets,
        replica_id=replica_id,
        prepend_axis_num=prepend_axis_num,
liangjing's avatar
v1  
liangjing committed
485
486
        **kwargs,
    )
xingjinliang's avatar
xingjinliang committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415


def to_local_if_dtensor(tensor: Union[torch.Tensor, "DTensor"]) -> torch.Tensor:
    """Returns the local shard of the given tensor if it is a DTensor."""
    with torch.no_grad():
        return tensor.to_local() if HAVE_DTENSOR and isinstance(tensor, DTensor) else tensor


def get_data_parallel_group_if_dtensor(
    tensor: Union[torch.Tensor, "DTensor"], data_parallel_group: "ProcessGroup" = None
) -> Optional["ProcessGroup"]:
    """Gets the data parallel group of the given tensor if it is a DTensor."""
    if HAVE_DTENSOR and isinstance(tensor, DTensor):
        current_group = tensor.device_mesh.get_group()
        assert data_parallel_group is None or current_group == data_parallel_group
        return current_group
    return None


def prepare_input_tensors_for_wgrad_compute(grad_output, all_gathered_input):
    """Ensure grad_output is stored in a contiguous buffer."""
    # Doing gather + slicing during the NeMo forward pass can make this tensor
    # not be contiguous. PyTorch only checks if the tensor is contiguous, and only
    # clones it if it's not contiguous:
    # https://github.com/pytorch/pytorch/blob/c47cf9bc7f9e02f649ab4ed53fe4d35732c92ab6/torch/_refs/__init__.py#L2761
    grad_output = grad_output.contiguous()
    # Convert the tensor shapes to 2D for execution compatibility
    if grad_output.dim() == 3:
        grad_output = grad_output.view(
            grad_output.shape[0] * grad_output.shape[1], grad_output.shape[2]
        )
        all_gathered_input = all_gathered_input.view(
            all_gathered_input.shape[0] * all_gathered_input.shape[1], all_gathered_input.shape[2]
        )

    return grad_output, all_gathered_input


if is_torch_min_version("1.13.0"):
    dist_all_gather_func = torch.distributed.all_gather_into_tensor
else:
    dist_all_gather_func = torch.distributed._all_gather_base


def drain_embedding_wgrad_compute(config, embedding_activation_buffer, grad_output_buffer, weight):
    """Helper for performing embedding wgrad GEMM's during the pipeline drain phase, pipelines the
    AllGather and GEMM's.

    Should only be used when pipeline model parallelism and gradient accumulation
    fusion are enabled.
    """

    assert len(embedding_activation_buffer) == len(
        grad_output_buffer
    ), "Length of activation and gradient buffers need to be equal!"

    import fused_weight_gradient_mlp_cuda

    from megatron.core.parallel_state import (
        get_global_memory_buffer,
        get_tensor_model_parallel_group,
        get_tensor_model_parallel_world_size,
    )

    input = embedding_activation_buffer.pop(0)
    world_size = get_tensor_model_parallel_world_size()
    dim_size = list(input.size())
    dim_size[0] = dim_size[0] * world_size

    all_gathered_input = [None, None]
    if config.sequence_parallel:
        all_gather_buffer = get_global_memory_buffer().get_tensor(dim_size, input.dtype, "mpu_0")
        handle = dist_all_gather_func(
            all_gather_buffer, input, group=get_tensor_model_parallel_group(), async_op=False
        )

        all_gathered_input[0] = all_gather_buffer
        all_gather_buffer = None
    else:
        all_gathered_input[0] = input

    input = None

    def wgrad_compute(all_gathered_input, grad_output, weight):

        grad_output, all_gathered_input = prepare_input_tensors_for_wgrad_compute(
            grad_output, all_gathered_input
        )

        if config.gradient_accumulation_fusion:
            if weight.main_grad.dtype == torch.float32:
                fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp32(
                    all_gathered_input, grad_output, weight.main_grad
                )
            elif weight.main_grad.dtype in (torch.float16, torch.bfloat16):
                fused_weight_gradient_mlp_cuda.wgrad_gemm_accum_fp16(
                    all_gathered_input, grad_output, weight.main_grad
                )
            else:
                raise RuntimeError("Unsupported gradient type for gradient accumulation fusion")

    # We have all_gathered_input list acting as a double buffer here,
    # since we are pipelining the AllGather and GEMM,one buffer all gathers
    # the input while the other buffer reads from it for the GEMM. We use i
    # and (i+1) for indexing to enable this double buffering.
    for i in range(len(embedding_activation_buffer)):
        input = embedding_activation_buffer.pop(0)
        if config.sequence_parallel:
            name = "mpu_" + str((i + 1) % 2)
            all_gather_buffer = get_global_memory_buffer().get_tensor(dim_size, input.dtype, name)
            handle = dist_all_gather_func(
                all_gather_buffer, input, group=get_tensor_model_parallel_group(), async_op=True
            )

            all_gathered_input[(i + 1) % 2] = all_gather_buffer
            all_gather_buffer = None
        else:
            all_gathered_input[(i + 1) % 2] = input

        grad_output = grad_output_buffer.pop(0)
        wgrad_compute(all_gathered_input[i % 2], grad_output, weight)
        drain_idx = (i + 1) % 2
        input, all_gathered_input[i % 2], grad_output = None, None, None

        if config.sequence_parallel:
            handle.wait()

    grad_output = grad_output_buffer.pop(0)
    wgrad_compute(all_gathered_input[drain_idx], grad_output, weight)
    input, all_gathered_input[drain_idx], grad_output = None, None, None


def local_multi_tensor_applier(op, noop_flag_buffer, tensor_lists, *args):
    """Multi tensor op applier"""
    return op(2048 * 32, noop_flag_buffer, tensor_lists, *args)


# computes l2 norm for a list of contiguous tensors
# works as a drop-in replacement for amp_C.multi_tensor_l2norm
def local_multi_tensor_l2_norm(chunk_size, noop_flag, tensor_lists, per_tensor, *args):
    """
    Computes l2 norm for a list of contiguous tensors
    works as a drop-in replacement for amp_C.multi_tensor_l2norm
    """
    l2 = [[(torch.norm(tensor)) for tensor in tensor_list] for tensor_list in tensor_lists]
    l2_reduced = torch.norm(torch.tensor(l2))
    l2_cuda = torch.tensor([float(l2_reduced)], dtype=torch.float, device='cuda')
    return l2_cuda, None


# works as a drop-in replacement for amp_C.multi_tensor_scale
def local_multi_tensor_scale(chunk_size, noop_flag, tensor_lists, scale):
    """Works as a drop-in replacement for amp_C.multi_tensor_scale."""
    for src, dst in zip(tensor_lists[0], tensor_lists[1]):
        dst.copy_(src * scale)


class _ValueWithRank:
    """This is an internal class, not for use outside this module

    Attributes:
        _rank (int): rank for the value
        _value (float) : the value it stores, eg elapsed time
        _unit (str) : unit for the value
    """

    def __init__(self, value: float, rank: int, unit: str = "") -> None:
        """Initializer

        Args:
            _value (float): the initial value with which it is inited
            _rank (int): the rank number
            _unit (str) : the unit of the value, eg ms or flops
        """
        self._rank = rank
        self._value = value
        self._unit = unit

    def __lt__(self, other) -> bool:
        """Check if value of self is smaller than other's value

        Args:
            other (_ValueWithRank): The other object to compare with

        Returns:
            bool: True if lhs._value of operand is less than rhs._value, else False
        """
        return self._value < other._value

    def __gt__(self, other) -> bool:
        """Check if value of self is larger than other's value

        Args:
            other (_ValueWithRank): The other object to compare with

        Returns:
            bool: True if lhs._value of operand is greater than rhs._value, else False
        """
        return self._value > other._value

    def __call__(self) -> Tuple[float, int, str]:
        """Returns the value, the rank, and unit as a Tuple

        Returns:
            Tuple[float, int, str]: value, rank, unit
        """
        return self._value, self._rank, self._unit

    def __str__(self) -> str:
        """String representation of the object

        Returns:
            str: strigified object
        """

        return f"{self._value:.2f}{self._unit}/{self._rank}"


@dataclass
class _StragglerData:
    """This is an internal dataclass, not for use outside this module

    Attributes:
        min_elapsed (_ValueWithRank) min iteration time across all ranks
        max_elapsed (_ValueWithRank) max iteration time across all ranks
        min_btime (_ValueWithRank) min cpu time across all ranks
        max_btime (_ValueWithRank) max cpu time across all ranks
        min_temp (_ValueWithRank): min gpu temp across all ranks
        max_temp (_ValueWithRank): max gpu temp across all ranks
        min_power (_ValueWithRank) min gpu power across all ranks
        max_power (_ValueWithRank) max gpu power across all ranks
        min_util (_ValueWithRank): min gpu util across all ranks
        max_util (_ValueWithRank): max gpu util across all ranks
        min_clock (_ValueWithRank): min gpu clock across all ranks
        max_clock (_ValueWithRank) max gpu clock across all ranks
        aflops (List[_ValueWithRank]): sorted array of (_ValueWithRank)
    """

    # gemm time
    min_elapsed = _ValueWithRank(sys.float_info.max, 0, "ms")
    max_elapsed = _ValueWithRank(sys.float_info.min, 0, "ms")
    # get_batch time
    min_btime = _ValueWithRank(sys.float_info.max, 0, "us")
    max_btime = _ValueWithRank(sys.float_info.min, 0, "us")
    # temp
    min_temp = _ValueWithRank(sys.float_info.max, 0, "C")
    max_temp = _ValueWithRank(sys.float_info.min, 0, "C")
    # power
    min_power = _ValueWithRank(sys.float_info.max, 0, "W")
    max_power = _ValueWithRank(sys.float_info.min, 0, "W")
    # util
    min_util = _ValueWithRank(sys.float_info.max, 0, "%")
    max_util = _ValueWithRank(sys.float_info.min, 0, "%")
    # clock
    min_clock = _ValueWithRank(sys.float_info.max, 0, "MHz")
    max_clock = _ValueWithRank(sys.float_info.min, 0, "MHz")
    aflops: Union[List[_ValueWithRank], None] = None


class StragglerDetector:
    """Singleton Class implementing per rank Straggler Detector

    It use cuda events to time operation of choice using the
    start and stop methods which can be directly invoked using
    the class instance or can be used like a python context.
    After collection, a report() method is available to display
    the collected metrics. It is only supported if CUDA is
    available. megatron/core/README_STRAGGLER.md for more info

    Note:
        The instance and class attributes mentioned below are all
        private to the class and has no use outside the class

    Attributes:
        _off (bool): current state of the toggle
        start (FunctionType): start method
        stop (FunctionType): stop method
        world (int): world size
        rank (int): rank for this instance
        mmcnt (int): number of ranks to report
        port (int): control port
        amp (float): amplification factor for TFLOPs, default 3.0
        toggle (bool): whether to start/stop detector collection
        bdata (bool): when true, just collect get_batch
        dev (int): cuda device
        evt_q (LifoQueue): cuda event queue
        start_gemm_ev (list[torch.cuda.Event]): cuda start event
        stop_gemm_ev (list[torch.cuda.Event]): cuda stop event
        start_data_ev (list[torch.cuda.Event]): cuda start event
        stop_data_ev (list[torch.cuda.Event]): cuda stop event
        start_gemm_tm (list[int]): start time (wallclock)
        stop_gemm_tm (list[int]): stop time (wallclock)
        start_data_tm (list[int]): start time for get_batch
        stop_data_tm (list[int]): stop time for get_batch
        sock (socket): the controller socket
        ctrlr (Thread): the controller thread
    """

    _configured = False
    """Indicates if the singleton instance is configured or not
    """

    def __new__(cls: Type["StragglerDetector"]) -> "StragglerDetector":
        """Constructor
        Creates an instance of the class if not created

        Args:
            cls (Type[&#39;StragglerDetector&#39;]): The class type

        Returns:
            StragglerDetector: the class instance
        """

        if not hasattr(cls, "_instance"):
            cls._instance = super(StragglerDetector, cls).__new__(cls)
        return cls._instance

    def __init__(self) -> None:
        """Initializer

        The inital state of the StragglerDetector instance is disabled.
        The enabled state is indicated using self._off member variable
        and the proerty enabled.
        """
        self._off: bool = True
        self.start = self.null_method
        self.stop = self.null_method
        self.world: int = 0
        self.rank: int = 0
        self.mmcnt: int = 1
        self.port: int = 0
        self.amp: float = 3.0
        self.toggle: bool = False
        self.bdata: bool = False
        self.dev: Union[torch.device, int, None] = None
        self.evt_q: Union[queue.LifoQueue, None] = None
        self.start_gemm_ev: List[torch.cuda.Event] = []
        self.stop_gemm_ev: List[torch.cuda.Event] = []
        self.start_data_ev: List[torch.cuda.Event] = []
        self.stop_data_ev: List[torch.cuda.Event] = []
        self.start_gemm_tm: List[int] = []
        self.stop_gemm_tm: List[int] = []
        self.start_data_tm: List[int] = []
        self.stop_data_tm: List[int] = []
        self.sock: Union[socket.socket, None] = None
        self.ctrlr: Union[threading.Thread, None] = None

    def configure(
        self,
        world: int,
        rank: int,
        mmcnt: int = 1,
        amp: float = 3.0,
        port: int = 65535,
        prefill: int = 1024,
        enabled: bool = False,
    ) -> None:
        """This method is called to configure the Singleton instance

        It should be called once per instantiation per process.

        Note:
            The constructor keeps the state of instance disabled
            i.e no collection will happen even when start/stop methods are
            called. Only when enabled is True (self._off is True), the
            start/stop method pointers get assigned the real collection
            methods, otherwise they are initialized with null_method

        Args:
            world (int): World Size
            rank (int): The rank of this trainer
            mmcnt (int, optional): Number of ranks to print for showing Min/Max Etpt.
                                   Defaults to 1.
            amp (float, optional): Set to 3.0 if we only use timers in fwd pass.
                                   Defaults to 3.0.
            port (int, optional): Control port, useful only for rank-0. Defaults to 65535.
            prefill (int, optional): How many Events to pre-populate. Defaults to 1024.
            enabled (bool, optional): Whether or not collection is enabled on startup.
                                      Defaults to False.
        """
        if StragglerDetector._configured:
            # don't throw
            return
        StragglerDetector._configured = True
        self.bdata = False
        self.start = self.null_method
        self.stop = self.null_method
        self._off = True
        # No CUDA, No Support
        if torch.cuda.is_available():
            self._off = not enabled
            self.world = world
            self.rank = rank
            self.mmcnt = mmcnt if mmcnt > 1 else 1
            self.amp = amp
            self.port = port
            self.toggle = False
            self.bdata = False
            self.evt_q = queue.LifoQueue()
            self.start_gemm_ev = []
            self.stop_gemm_ev = []
            self.start_data_ev = []
            self.stop_data_ev = []
            self.start_gemm_tm = []
            self.stop_gemm_tm = []
            self.start_data_tm = []
            self.stop_data_tm = []
            backend = torch.distributed.get_backend()
            if backend == "nccl":
                self.dev = torch.cuda.current_device()
            else:
                self.dev = torch.device("cpu")
            # cache some events
            for _ in range(prefill):
                self.evt_q.put(torch.cuda.Event(enable_timing=True))
            if self.rank == 0:
                # Start the controller
                self._controller()
            if not self._off:
                self.start = self.start_method
                self.stop = self.stop_method

    def reset(self) -> None:
        """This method is called to reset the metrics state of the instance

        It is generally called from within elapsed() after extracting per rank metrics.
        """
        if self._off:
            return
        # Pool them
        if self.evt_q is not None:
            _ = [self.evt_q.put(ev) for ev in self.start_gemm_ev]
            _ = [self.evt_q.put(ev) for ev in self.stop_gemm_ev]
            _ = [self.evt_q.put(ev) for ev in self.start_data_ev]
            _ = [self.evt_q.put(ev) for ev in self.stop_data_ev]
        self.start_gemm_ev = []
        self.stop_gemm_ev = []
        self.start_data_ev = []
        self.stop_data_ev = []
        # Use regular timers
        self.start_gemm_tm = []
        self.stop_gemm_tm = []
        self.start_data_tm = []
        self.stop_data_tm = []
        self.bdata = False

    def start_method(self) -> None:
        """This method adds the start timers.

        Both cuda event and perf_counter are added. If bdata is set to
        true from __call__, this method skips inserting cuda
        timer. This way it can be used to measure time spent on
        CPU - generally useful for timing get_batch()
        """
        # Not reentrant
        if self.evt_q is not None and self.evt_q.qsize() > 1:
            sev = self.evt_q.get()  # no try-catch
            eev = self.evt_q.get()  # no try-catch
        else:
            sev = torch.cuda.Event(enable_timing=True)
            eev = torch.cuda.Event(enable_timing=True)
        # First check if this start is for data
        if self.bdata:
            self.start_data_ev.append(sev)
            self.stop_data_ev.append(eev)
            self.start_data_tm.append(0)
            self.stop_data_tm.append(0)
            idx = len(self.stop_data_tm) - 1
            self.start_data_tm[idx] = time.perf_counter_ns()
            self.start_data_ev[idx].record()
            self.bdata = False
            return
        self.start_gemm_ev.append(sev)
        self.stop_gemm_ev.append(eev)
        self.start_gemm_tm.append(0)
        self.stop_gemm_tm.append(0)
        idx = len(self.stop_gemm_tm) - 1
        self.start_gemm_tm[idx] = time.perf_counter_ns()
        self.start_gemm_ev[idx].record()

    def stop_method(self) -> None:
        """This method adds the stop timers.

        Both cuda event and perf_counter are added. If bdata is set to
        true from __call__, this method skips inserting cuda
        timer. Also see start_method()
        """
        # Not reentrant
        # First check if this stop is for data
        idx = len(self.stop_data_tm) - 1
        if idx >= 0 and self.stop_data_tm[idx] == 0:
            self.stop_data_tm[idx] = time.perf_counter_ns()
            self.stop_data_ev[idx].record()
            return
        idx = len(self.stop_gemm_tm) - 1
        if idx >= 0 and self.stop_gemm_tm[idx] == 0:
            self.stop_gemm_tm[idx] = time.perf_counter_ns()
            self.stop_gemm_ev[idx].record()

    def elapsed(self) -> Tuple[float, float, int, int, int, int]:
        """This method is called from report(), or can be called directly

         It is called to collect all the elapsed time since last reset().
         It finally calls reset()

        Returns:
            Tuple[float, float, int, int, int, int]: see below for returns
                delta       : time spent in kernel
                batch_delta : time spent in get_batch
                temp        : observed gpu temp
                power       : observed gpu power
                util        : observed gpu utilization
                clock       : observed gpu clock
        """
        if self._off:
            # match with return below
            return 0, 0, 0, 0, 0, 0
        ls_ev = len(self.start_gemm_ev)
        le_ev = len(self.stop_gemm_ev)
        ls_bs = len(self.start_data_ev)
        ls_be = len(self.stop_data_ev)
        delta = 0.0
        batch_delta = 0.0
        temp = 0
        power = 0
        clock = 0
        if ls_ev != le_ev:
            logger.warning(f"Event Start/Stop out of sync {ls_ev}/{le_ev}")
        elif ls_bs != ls_be:
            logger.warning(f"get_batch Start/Stop out of sync {ls_bs}/{ls_be}")
        else:
            temp = torch.cuda.temperature()
            power = torch.cuda.power_draw()
            util = torch.cuda.utilization()
            clock = torch.cuda.clock_rate()
            torch.cuda.synchronize()
            # Process Events
            for i in range(ls_ev):
                e_ev = self.start_gemm_ev[i].elapsed_time(self.stop_gemm_ev[i])
                e_tm = (self.stop_gemm_tm[i] - self.start_gemm_tm[i]) / 1e6  # ns to ms
                # Pick the larger of Event and perf_counter time?
                delta += max(e_ev, e_tm)
            # Process get_batch
            for i in range(ls_bs):
                b_ev = self.start_data_ev[i].elapsed_time(self.stop_data_ev[i])
                b_tm = (self.stop_data_tm[i] - self.start_data_tm[i]) / 1e6  # ns to ms
                # data fetching has prefetch, hence take the max, instead of avg
                batch_delta = max(batch_delta, max(b_ev, b_tm))
        self.reset()  # Prepare for next round
        # time in ms, batch_delta in ms, check return above
        return delta, batch_delta, temp, power, util, clock

    def report(self, total_flops: float = 0.0, log_interval: int = 0) -> bool:
        """Function to log the min/max metircs and the associated rank over a time period

        It finds the slowest and fastest rank among all ranks. It should be
        called by all ranks, but only rank-0 prints the analysis
        At the end it checks, if the straggler detector should
        remain active or if it should be deactivated.

        Args:
            total_flops (float, optional): The theoretical flops over the period. Defaults to 0.0.
            log_interval (int, optional): The training interval over which reporting is called(ms)
                                          Defaults to 0.

        Returns:
            bool: True if reported, else False
        """
        ret = False
        if not self._off and total_flops > 0.0 and log_interval > 0:
            elapsed, btime, temp, power, util, clock = self.elapsed()  # get raw time
            # btime (get_batch time is max in the iteration)
            ptime = elapsed / (log_interval * 1.0)  # avg per iteration elapsed time, ms
            api_flops = total_flops / (log_interval * 1.0)  # avg per iteration flops, ms
            apir_flops = api_flops / (
                ptime * 10**9 * self.world
            )  # this is avg per iteration this rank's thruput, TFLOP/s (note 10**9),
            et_flops = apir_flops / self.amp  # Estimated TFLOPs, not tracing backward

            o_dt = self._min_max(
                ptime, btime, float(temp), float(power), float(util), float(clock), et_flops
            )
            if self.rank == 0 and o_dt is not None and o_dt.aflops is not None:
                now = f"[{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}]"
                min_flops, min_frank, _ = o_dt.aflops[0]()
                max_flops, max_frank, _ = o_dt.aflops[-1]()
                logger.info(
                    f"{now} | "
                    f"MnRtt/Rnk: {o_dt.min_elapsed} | "
                    f"MxRtt/Rnk: {o_dt.max_elapsed} | "
                    f"MnPwr/Rnk: {o_dt.min_power} | "
                    f"MxPwr/Rnk: {o_dt.max_power} | "
                    f"MnTmp/Rnk: {o_dt.min_temp} | "
                    f"MxTmp/Rnk: {o_dt.max_temp} | "
                    f"MnUtl/Rnk: {o_dt.min_util} | "
                    f"MxUtl/Rnk: {o_dt.max_util} | "
                    f"MnClk/Rnk: {o_dt.min_clock} | "
                    f"MxClk/Rnk: {o_dt.max_clock} | "
                    f"MnDRtt/Rnk: {o_dt.min_btime} | "
                    f"MxDRtt/Rnk: {o_dt.max_btime} | "
                    f"MnEtpt/Rnk: {min_flops:.2f}TF/{min_frank} | "
                    f"MxEtpt/Rnk: {max_flops:.2f}TF/{max_frank}"
                )
                if self.mmcnt > 1 and self.mmcnt < self.world:
                    line = f"^^^^ Bottom {self.mmcnt} Ranks with lowest  Etpt(TF):"
                    for i in range(self.mmcnt):
                        line += f" {o_dt.aflops[i]},"
                    logger.info(line)
                    line = f"^^^^ Top    {self.mmcnt} Ranks with highest Etpt(TF):"
                    shift = self.world - self.mmcnt
                    for i in range(self.mmcnt):
                        line += f" {o_dt.aflops[i+shift]},"
                    logger.info(line)
                ret = True

        # Check/Communicate if tracking is turned off or on
        self._check_toggle()
        return ret

    def _check_toggle(self) -> None:
        """Helper method to check if a request to toggle the collection state was made

        It checks iof collection state toggle req was made via the server listening on
        rank-0 since last call to report(). Called by report(). Calling this method
        indirectly from report() is the only way to activate the change that is made
        via rank-0
        """
        # If no change just communicate the current
        off = self._off
        if self.rank == 0 and self.toggle:
            off = not self._off
            self.toggle = False
        st = torch.tensor(off, dtype=torch.bool, device=self.dev)
        torch.distributed.broadcast(st, 0)  # Blocking
        # save old switch
        off = self._off
        self._off = bool(st.item())
        if off != self._off:
            if not self._off:
                self.start = self.start_method
                self.stop = self.stop_method
                state = "ON"
            else:
                self.start = self.null_method
                self.stop = self.null_method
                state = "OFF"
            if self.rank == 0:
                logger.info(f"Toggling StragglerDetector State {state}")

    def _handler(self) -> None:
        """Thread function for the controller.

        It is a tcp-server that listens on a port. Uses HTTP protocol.
        If connected to it using curl, it indicates a toggle of the
        collection state. The actual toggling happens at the end of
        calling report() when _check_toggle() is called.
        """
        resp = r"HTTP/1.0 200 OK\r\nConnection: Close\r\nContent-length: "

        if self.rank == 0:
            state = "OFF" if self._off else "ON"
            logger.info(
                f"Controller ready to recv commands on port {self.port}. Current state {state}"
            )
            while True and self.sock is not None:
                try:
                    conn, _ = self.sock.accept()
                    _ = conn.recv(1024)
                    self.toggle = True
                    state = "ON" if self._off else "OFF"
                    msg = f"Will turn StragglerDetector {state} at next logging interval"
                    msg_len = len(msg)
                    final_resp = f"{resp}{msg_len}\r\n\r\n{msg}"
                    conn.send(final_resp.encode())
                    conn.close()
                    logger.info(msg)
                except Exception as err:
                    logger.error(f"Error in stragler handler.. {str(err)}")
                    return

    def _controller(self):
        """Installs a controller listener that is used to toggle collection state.

        Called from configure(). Ignored for all ranks other than rank-0
        """
        try:
            if self.rank == 0:
                neth = "0.0.0.0"
                netp = self.port
                self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
                self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                self.sock.bind((neth, netp))
                self.sock.listen(128)
                self.ctrlr = threading.Thread(
                    target=self._handler, args=(), name="straggler", daemon=True
                )
                self.ctrlr.start()
        except Exception as err:
            logger.warning(f"StragglerDetector cannot be controlled.. {str(err)}")

    def _min_max(
        self,
        ptime: float,
        btime: float,
        temp: float,
        power: float,
        util: float,
        clock: float,
        flops: float,
    ) -> Union[_StragglerData, None]:
        """Helper function to find the min/max values

        Args:
            ptime (float): avg per iteration gpu time
            btime (float): avg per iteration cpu time
            temp (float): gpu temp at the time of reporting
            power (float): gpu power at the time of reporting
            util (float): gpu util at the time of reporting
            clock (float): gpu clock at the time of reporting
            flops (float): estimated flops for the rank

        Returns:
            Union[_StragglerData, None]: It contains the min/max of few metrics and the
                                         corresponding rank it also has sorted list of
                                         all (flops, rank) sorted by flops (aflops)
                                         or returns None if collecton is disabled
        """
        if self._off:
            return None
        # initialize output data object
        o_dt = _StragglerData()

        prof_data: Dict[str, Union[int, float]] = {}
        data_list: List[Dict[str, Union[int, float]]] = []
        prof_data["rank"] = self.rank
        prof_data["time"] = ptime
        prof_data["btime"] = btime
        prof_data["temp"] = temp
        prof_data["power"] = power
        prof_data["util"] = util
        prof_data["clock"] = clock
        prof_data["flops"] = flops

        if self.rank == 0:
            data_list = [prof_data] * self.world

        # this is blocking by default
        torch.distributed.gather_object(prof_data, object_gather_list=data_list, dst=0)

        if self.rank == 0:
            min_ctime = min(data_list, key=lambda k: k["time"])  # elapsed
            max_ctime = max(data_list, key=lambda k: k["time"])  # elapsed

            min_cbatch = min(data_list, key=lambda k: k["btime"])  # batch time
            max_cbatch = max(data_list, key=lambda k: k["btime"])  # batch time

            min_ctemp = min(data_list, key=lambda k: k["temp"])  # temp
            max_ctemp = max(data_list, key=lambda k: k["temp"])  # temp

            min_cpower = min(data_list, key=lambda k: k["power"])  # power
            max_cpower = max(data_list, key=lambda k: k["power"])  # power

            min_cutil = min(data_list, key=lambda k: k["util"])  # gpu util
            max_cutil = max(data_list, key=lambda k: k["util"])  # gpu util

            min_cclock = min(data_list, key=lambda k: k["clock"])  # gpu clock
            max_cclock = max(data_list, key=lambda k: k["clock"])  # gpu clock

            min_val = min_ctime["time"]
            min_rank = min_ctime["rank"]
            max_val = max_ctime["time"]
            max_rank = max_ctime["rank"]
            o_dt.min_elapsed = _ValueWithRank(min_val, int(min_rank), "ms")
            o_dt.max_elapsed = _ValueWithRank(max_val, int(max_rank), "ms")

            min_val = min_cbatch["btime"]
            min_rank = min_cbatch["rank"]
            max_val = max_cbatch["btime"]
            max_rank = max_cbatch["rank"]
            o_dt.min_btime = _ValueWithRank(min_val, int(min_rank), "ms")
            o_dt.max_btime = _ValueWithRank(max_val, int(max_rank), "ms")

            min_val = min_ctemp["temp"]
            min_rank = min_ctemp["rank"]
            max_val = max_ctemp["temp"]
            max_rank = max_ctemp["rank"]
            o_dt.min_temp = _ValueWithRank(min_val, int(min_rank), "C")
            o_dt.max_temp = _ValueWithRank(max_val, int(max_rank), "C")

            min_val = min_cpower["power"]
            min_rank = min_cpower["rank"]
            max_val = max_cpower["power"]
            max_rank = max_cpower["rank"]
            o_dt.min_power = _ValueWithRank(min_val, int(min_rank), "W")
            o_dt.max_power = _ValueWithRank(max_val, int(max_rank), "W")

            min_val = min_cutil["util"]
            min_rank = min_cutil["rank"]
            max_val = max_cutil["util"]
            max_rank = max_cutil["rank"]
            o_dt.min_util = _ValueWithRank(min_val, int(min_rank), "%")
            o_dt.max_util = _ValueWithRank(max_val, int(max_rank), "%")

            min_val = min_cclock["clock"]
            min_rank = min_cclock["rank"]
            max_val = max_cclock["clock"]
            max_rank = max_cclock["rank"]
            o_dt.min_clock = _ValueWithRank(min_val, int(min_rank), "MHz")
            o_dt.max_clock = _ValueWithRank(max_val, int(max_rank), "MHz")

            o_dt.aflops = [
                _ValueWithRank(d.get("flops", 0.0), int(d.get("rank", -1)))
                for _, d in enumerate(data_list)
            ]
            o_dt.aflops.sort(key=lambda val_with_rank: val_with_rank()[0])
        # wait for everyone here
        torch.distributed.barrier()

        return o_dt

    @property
    def enabled(self) -> bool:
        """Can be called to check the enabled state of the instance

        Note:
            After the request to toggle the state, the
            actual state change happens at end of call
            to report()
        """
        return not self._off

    @property
    def configured(self) -> bool:
        """Can be called to check if the instance is already configured

        Returns:
            bool: returns True if configure was called and was a success, else False
        """
        return StragglerDetector._configured

    @property
    def my_rank(self):
        """Can be called to get configured rank of this instance

        Returns:
            int: Configured rank for this instance
        """
        return self.rank

    @property
    def world_size(self) -> int:
        """Can be called to get configured world of this instance

        Returns:
            int: World size configured for this instance
        """
        return self.world

    def null_method(self) -> None:
        """Default method to initialize start/stop method ptrs"""
        pass

    def __enter__(self) -> "StragglerDetector":
        """Define context/instance entry

        Returns:
            StragglerDetector: the instance
        """
        self.start()
        return self

    def __call__(self, bdata: bool = False) -> "StragglerDetector":
        """Callable for the instance. Set context state,

        Useful when the context is used for cpu timers only when bdata=True

        Args:
            bdata (bool, optional): when true, only enables cpu timers. Defaults to False.

        Returns:
            StragglerDetector: the instance
        """
        self.bdata = bdata
        return self

    def __exit__(
        self,
        ex_type: Optional[Type[BaseException]],
        ex_val: Optional[BaseException],
        ex_tb: Optional[TracebackType],
    ) -> bool:
        """Define context/instance exit, calls the stop method

        Args:
            ex_type (Optional[Type[BaseException]]): Exception type
            ex_val (Optional[BaseException]): _description_
            ex_tb (Optional[TracebackType]): _description_

        Returns:
            bool: True if the exception was handled
        """
        # Should not suppress errors even if turned off
        if ex_type is not None:
            err = traceback.format_exception(ex_type, ex_val, ex_tb)
            logger.warning(f"{str(ex_val)}\n{err}")
        self.stop()
        return False


# Singleton, global visibility
__straggler__ = StragglerDetector()
"""StragglerDetector: private module variable, not be directly accessed
"""


# Check if Transformer Engine has Float8Tensor class
HAVE_TE_FLOAT8TENSOR = False
try:
    from transformer_engine.pytorch.float8_tensor import Float8Tensor

    HAVE_TE_FLOAT8TENSOR = True
except (ImportError, ModuleNotFoundError):
    # Float8Tensor not found
    pass


def is_float8tensor(tensor: torch.Tensor) -> bool:
    """Check if a tensor is a Transformer Engine Float8Tensor"""
    return HAVE_TE_FLOAT8TENSOR and isinstance(tensor, Float8Tensor)