timers.py 15.4 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.

"""Megatron timers."""

import time
xingjinliang's avatar
xingjinliang committed
6
7
from abc import ABC, abstractmethod
from typing import List
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
8
9
10

import torch

xingjinliang's avatar
xingjinliang committed
11
12
13
14
15
16
from megatron.core.utils import is_torch_min_version

if is_torch_min_version("1.13.0"):
    dist_all_gather_func = torch.distributed.all_gather_into_tensor
else:
    dist_all_gather_func = torch.distributed._all_gather_base
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17
18
19


class TimerBase(ABC):
xingjinliang's avatar
xingjinliang committed
20
    """Timer base class."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
21
22
23
24
25
26

    def __init__(self, name):
        self.name = name

    @abstractmethod
    def start(self, barrier=False):
xingjinliang's avatar
xingjinliang committed
27
        """Start the timer."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
29
30
31
        pass

    @abstractmethod
    def stop(self, barrier=False):
xingjinliang's avatar
xingjinliang committed
32
        """Stop the timer."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
33
34
35
36
        pass

    @abstractmethod
    def reset(self):
xingjinliang's avatar
xingjinliang committed
37
        """Reset timer."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
38
39
40
41
        pass

    @abstractmethod
    def elapsed(self, reset=True, barrier=False):
xingjinliang's avatar
xingjinliang committed
42
        """Calculates the elapsed time."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
43
44
45
46
        pass


class DummyTimer(TimerBase):
xingjinliang's avatar
xingjinliang committed
47
    """Dummy Timer."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def __init__(self):
        super().__init__('dummy timer')

    def start(self, barrier=False):
        return

    def stop(self, barrier=False):
        return

    def reset(self):
        return

    def elapsed(self, reset=True, barrier=False):
xingjinliang's avatar
xingjinliang committed
62
        raise Exception('dummy timer should not be used to calculate elapsed time')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63
64
65
66


class Timer(TimerBase):
    """
xingjinliang's avatar
xingjinliang committed
67
68
    Timer class with ability to start/stop.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
69
70
71
72
73
74
75
76
77
    Comment on using `barrier`: If this flag is passed, then all
    the caller processes will wait till all reach the timing routine.
    It is up to the user to make sure all the ranks in `barrier_group`
    call it otherwise, it will result in a hang.
    Comment on `barrier_group`: By default it is set to None which
    in torch distributed land, it will result in the global communicator.
    """

    def __init__(self, name):
xingjinliang's avatar
xingjinliang committed
78
79
80
81
82
        """Initialize Timer.

        Args:
            name (str): Name of the timer.
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
84
        super().__init__(name)
        self._elapsed = 0.0
xingjinliang's avatar
xingjinliang committed
85
        self._active_time = 0.0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86
87
88
89
90
91
        self._started = False
        # Note that None will default to the global process group
        self._barrier_group = None
        self._start_time = time.time()

    def set_barrier_group(self, barrier_group):
xingjinliang's avatar
xingjinliang committed
92
        """Sets barrier group.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
93

xingjinliang's avatar
xingjinliang committed
94
95
96
97
        Args:
            barrier_group (ProcessGroup): Torch ProcessGroup for barrier.
        """
        self._barrier_group = barrier_group
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
98
99

    def start(self, barrier=False):
xingjinliang's avatar
xingjinliang committed
100
101
102
103
104
        """Start the timer.

        Args:
            barrier (bool, optional): Synchronizes ranks before starting. Defaults to False.
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
105
106
107
108
109
110
111
112
        assert not self._started, 'timer has already been started'
        if barrier:
            torch.distributed.barrier(group=self._barrier_group)
        torch.cuda.synchronize()
        self._start_time = time.time()
        self._started = True

    def stop(self, barrier=False):
xingjinliang's avatar
xingjinliang committed
113
114
115
116
117
        """Stop the timer.

        Args:
            barrier (bool, optional): Synchronizes ranks before stopping. Defaults to False.
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118
119
120
121
        assert self._started, 'timer is not started'
        if barrier:
            torch.distributed.barrier(group=self._barrier_group)
        torch.cuda.synchronize()
xingjinliang's avatar
xingjinliang committed
122
123
124
        elapsed = time.time() - self._start_time
        self._elapsed += elapsed
        self._active_time += elapsed
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
125
126
127
128
        self._started = False

    def reset(self):
        """Reset timer."""
xingjinliang's avatar
xingjinliang committed
129
        # Don't reset _active_time
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
130
131
132
133
        self._elapsed = 0.0
        self._started = False

    def elapsed(self, reset=True, barrier=False):
xingjinliang's avatar
xingjinliang committed
134
135
136
137
138
139
140
141
142
        """Calculates the elapsed time and restarts timer.

        Args:
            reset (bool, optional): Resets timer before restarting. Defaults to True.
            barrier (bool, optional): Synchronizes ranks before stopping. Defaults to False.

        Returns:
            float: Elapsed time.
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        _started = self._started
        # If the timing in progress, end it first.
        if self._started:
            self.stop(barrier=barrier)
        # Get the elapsed time.
        _elapsed = self._elapsed
        # Reset the elapsed time
        if reset:
            self.reset()
        # If timing was in progress, set it back.
        if _started:
            self.start(barrier=barrier)
        return _elapsed

xingjinliang's avatar
xingjinliang committed
157
158
159
    def active_time(self):
        """Returns the active time."""
        return self._active_time
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
160
161
162


class Timers:
xingjinliang's avatar
xingjinliang committed
163
    """Class for a group of Timers."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
164
165

    def __init__(self, log_level, log_option):
xingjinliang's avatar
xingjinliang committed
166
167
168
169
170
171
172
        """Initialize group of timers.

        Args:
            log_level (int): Log level to control what timers are enabled.
            log_option (str): Setting for logging statistics over ranks for all the timers.
                              Allowed: ['max', 'minmax', 'all'].
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
173
        self._log_level = log_level
xingjinliang's avatar
xingjinliang committed
174
175
176
177
178
179
        allowed_log_options = set(['max', 'minmax', 'all'])
        assert (
            log_option in allowed_log_options
        ), 'input log option {} is invalid. It must be one of {}'.format(
            log_option, allowed_log_options
        )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
180
181
182
183
184
185
186
        self._log_option = log_option
        self._timers = {}
        self._log_levels = {}
        self._dummy_timer = DummyTimer()
        self._max_log_level = 2

    def __call__(self, name, log_level=None):
xingjinliang's avatar
xingjinliang committed
187
        """Call timer with name and log level."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
188
189
190
191
        # If the timer has already been set, then check if the log-level
        # is provided, it matches the one that the timer was created with.
        if name in self._timers:
            if log_level is not None:
xingjinliang's avatar
xingjinliang committed
192
193
194
195
                assert log_level == self._log_levels[name], (
                    'input log level {} does not match already existing '
                    'log level {} for {} timer'.format(log_level, self._log_levels[name], name)
                )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
196
197
198
199
200
            return self._timers[name]
        # If timer does not exist and no log level is provided,
        # set it to the max log level which is 2.
        if log_level is None:
            log_level = self._max_log_level
xingjinliang's avatar
xingjinliang committed
201
202
203
204
205
        assert (
            log_level <= self._max_log_level
        ), 'log level {} is larger than max supported log level {}'.format(
            log_level, self._max_log_level
        )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
206
207
208
209
210
211
212
213
214
215
        # Now if the input log level is larger than the one set for
        # the timers class, just ignore it and return a dummy timer.
        if log_level > self._log_level:
            return self._dummy_timer
        # Otherwise, initalize the timer and set the level.
        self._timers[name] = Timer(name)
        self._log_levels[name] = log_level
        return self._timers[name]

    def _get_elapsed_time_all_ranks(self, names, reset, barrier):
xingjinliang's avatar
xingjinliang committed
216
        """Returns elapsed times of timers in names.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
217
218
219
220
221
        Assumptions:
            - All the ranks call this function.
            - `names` are identical on all ranks.
        If the above assumptions are not met, calling this function will
        result in hang.
xingjinliang's avatar
xingjinliang committed
222
223
224
225
226
227
228
229

        Args:
            names (List[str]): list of timer names
            reset (bool): reset the timer after recording the elapsed time
            barrier (bool): if set, do a global barrier before time measurments

        Returns:
            torch.tensor: Tensor of size [world_size, len(names)] with times in float.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        """

        # First make sure all the callers are in sync.
        if barrier:
            torch.distributed.barrier()

        world_size = torch.distributed.get_world_size()
        rank = torch.distributed.get_rank()

        # Here we can use gather on the rank we want to print the
        # timing, however, there is no gather_base support in
        # pytorch yet. It is simpler to deal with a single tensor
        # and since we are only gathering a small amount of data,
        # it should be ok to use all-gather instead of gather.
xingjinliang's avatar
xingjinliang committed
244
245
246
        rank_name_to_time = torch.zeros(
            (world_size, len(names)), dtype=torch.float, device=torch.cuda.current_device()
        )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
247
248
249
250
251
252
        for i, name in enumerate(names):
            if name in self._timers:
                # Here we don't need to pass the barrier flag as all
                # the processes are already in sync. This avoids the
                # issue of different timers having different barrier
                # groups inside their class.
xingjinliang's avatar
xingjinliang committed
253
                rank_name_to_time[rank, i] = self._timers[name].elapsed(reset=reset)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
254
255

        # See the note above for why we are not using gather.
xingjinliang's avatar
xingjinliang committed
256
        dist_all_gather_func(rank_name_to_time.view(-1), rank_name_to_time[rank, :].view(-1))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
257
258
259
260
261
262

        return rank_name_to_time

    def _get_global_min_max_time(self, names, reset, barrier, normalizer):
        """Report only min and max times across all ranks."""

xingjinliang's avatar
xingjinliang committed
263
        rank_name_to_time = self._get_elapsed_time_all_ranks(names, reset, barrier)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
264
265
266
267
268
269
270
271
272
        name_to_min_max_time = {}
        for i, name in enumerate(names):
            rank_to_time = rank_name_to_time[:, i]
            # filter out the ones we did not have any timings for
            rank_to_time = rank_to_time[rank_to_time > 0.0]
            # If the timer exists:
            if rank_to_time.numel() > 0:
                name_to_min_max_time[name] = (
                    rank_to_time.min().item() / normalizer,
xingjinliang's avatar
xingjinliang committed
273
274
                    rank_to_time.max().item() / normalizer,
                )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
275
276
        return name_to_min_max_time

xingjinliang's avatar
xingjinliang committed
277
278
279
    def _get_global_min_max_time_string(self, names, reset, barrier, normalizer, max_only):
        """Report strings for max/minmax times across all ranks."""
        name_to_min_max_time = self._get_global_min_max_time(names, reset, barrier, normalizer)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
        if not name_to_min_max_time:
            return None
xingjinliang's avatar
xingjinliang committed
282
283
284
285
        if max_only:
            output_string = 'max time across ranks (ms):'
        else:
            output_string = '(min, max) time across ranks (ms):'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
286
287
288
        for name in name_to_min_max_time:
            min_time, max_time = name_to_min_max_time[name]
            if max_only:
xingjinliang's avatar
xingjinliang committed
289
                output_string += '\n    {}: {:.2f}'.format((name + ' ').ljust(48, '.'), max_time)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
290
291
            else:
                output_string += '\n    {}: ({:.2f}, {:.2f})'.format(
xingjinliang's avatar
xingjinliang committed
292
293
                    (name + ' ').ljust(48, '.'), min_time, max_time
                )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
294
295
296
297
        return output_string

    def _get_all_ranks_time_string(self, names, reset, barrier, normalizer):
        """Report times across all ranks."""
xingjinliang's avatar
xingjinliang committed
298
        rank_name_to_time = self._get_elapsed_time_all_ranks(names, reset, barrier)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
299
300
301
302
303
304
305
306
307
308
309
310

        output_string = 'times across ranks (ms):'
        no_reported_timing = True
        for i, name in enumerate(names):
            not_yet_found = True
            for rank in range(torch.distributed.get_world_size()):
                if rank_name_to_time[rank, i] > 0:
                    no_reported_timing = False
                    if not_yet_found:
                        not_yet_found = False
                        output_string += '\n  {}:'.format(name)
                    output_string += '\n     rank {:2d}: {:.2f}'.format(
xingjinliang's avatar
xingjinliang committed
311
312
                        rank, rank_name_to_time[rank, i] / normalizer
                    )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
313
314
315
316
        if no_reported_timing:
            return None
        return output_string

xingjinliang's avatar
xingjinliang committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def get_all_timers_string(
        self,
        names: List[str] = None,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """Returns the output string with logged timer values according to configured options.

        Args:
            names (List[str]): Names of the timers to log. If None, all registered timers are
                               fetched. Defaults to None.
            normalizer (float, optional): Normalizes the timer values by the factor.
                                          Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments.
                                      Defaults to False.

        Raises:
            Exception: Raises if log option is invalid.

        Returns:
            str: Formatted string with the timer values.
        """
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
341

xingjinliang's avatar
xingjinliang committed
342
343
        if names == None:  # get all registered timers
            names = self._timers.keys()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
344
345
346
347
348
349
350

        assert normalizer > 0.0
        if self._log_option in ['max', 'minmax']:
            max_only = False
            if self._log_option == 'max':
                max_only = True
            output_string = self._get_global_min_max_time_string(
xingjinliang's avatar
xingjinliang committed
351
352
                names, reset, barrier, normalizer / 1000.0, max_only
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
353
        elif self._log_option == 'all':
xingjinliang's avatar
xingjinliang committed
354
355
356
            output_string = self._get_all_ranks_time_string(
                names, reset, barrier, normalizer / 1000.0
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
357
        else:
xingjinliang's avatar
xingjinliang committed
358
359
            raise Exception('unknown timing log option {}'.format(self._log_option))
        return output_string
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
360

xingjinliang's avatar
xingjinliang committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def log(
        self,
        names: List[str],
        rank: int = None,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """logs the timers passed in names to stdout. Example usage is to log average per step
           value for timer 'foo', this function can be called with normalizer factor set to logging
           interval.

        Args:
            names (List[str]): Names of the timers to log.
            rank (int, optional): logs the timers to a specific rank. If set to None, logs to the
                                  last rank. Defaults to None.
            normalizer (float, optional): Normalizes the timer values by the factor.
                                          Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments.
                                      Defaults to False.
        """

        output_string = self.get_all_timers_string(names, normalizer, reset, barrier)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
386
387
388
389
390
        # If no input rank is provided, log on last rank.
        if rank is None:
            rank = torch.distributed.get_world_size() - 1
        if rank == torch.distributed.get_rank() and output_string is not None:
            print(output_string, flush=True)

xingjinliang's avatar
xingjinliang committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def write(
        self,
        names: List[str],
        writer,
        iteration: int,
        normalizer: float = 1.0,
        reset: bool = True,
        barrier: bool = False,
    ):
        """Write timers to a tensorboard writer. Note that we only report maximum time across ranks
           to tensorboard.

        Args:
            names (List[str]): Names of the timers to log.
            writer (SummaryWriter): Tensorboard SummaryWriter object
            iteration (int): Current iteration.
            normalizer (float, optional): Normalizes the timer values by the factor.
                                          Defaults to 1.0.
            reset (bool, optional): Whether to reset timer values after logging. Defaults to True.
            barrier (bool, optional): Whether to do a global barrier before time measurments.
                                      Defaults to False.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
413
414
415
416
        """
        # currently when using add_scalars,
        # torch.utils.add_scalars makes each timer its own run, which
        # polutes the runs list, so we just add each as a scalar
        assert normalizer > 0.0
xingjinliang's avatar
xingjinliang committed
417
        name_to_min_max_time = self._get_global_min_max_time(names, reset, barrier, normalizer)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
418
419
420
421
        if writer is not None:
            for name in name_to_min_max_time:
                _, max_time = name_to_min_max_time[name]
                writer.add_scalar(name + '-time', max_time, iteration)