indexed_dataset.py 29.6 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# Essentially re-written in entirety

import logging
import os
import shutil
import struct
import time
from abc import ABC, abstractmethod
from enum import Enum
from functools import lru_cache
from itertools import accumulate
from types import TracebackType
from typing import List, Optional, Tuple, Type, Union

try:
    import boto3
except ModuleNotFoundError:
    pass
import numpy
import torch

from megatron.core.datasets.utils_s3 import (
    S3Config,
    is_s3_path,
    maybe_download_file,
    object_exists,
    parse_s3_path,
)
from megatron.core.utils import log_single_rank

logger = logging.getLogger(__name__)

_INDEX_HEADER = b"MMIDIDX\x00\x00"


class DType(Enum):
    """The NumPy data type Enum for writing/reading the IndexedDataset indices"""

    uint8 = 1
    int8 = 2
    int16 = 3
    int32 = 4
    int64 = 5
    float64 = 6
    float32 = 7
    uint16 = 8

    @classmethod
    def code_from_dtype(cls, value: Type[numpy.number]) -> int:
        """Get the code from the dtype

        Args:
            value (Type[numpy.number]): The dtype

        Returns:
            int: The code
        """
        return cls[value.__name__].value

    @classmethod
    def dtype_from_code(cls, value: int) -> Type[numpy.number]:
        """Get the dtype from the code

        Args:
            value (int): The code

        Returns:
            Type[numpy.number]: The dtype
        """
        return getattr(numpy, cls(value).name)

    @staticmethod
    def size(key: Union[int, Type[numpy.number]]) -> int:
        """Get the size of the dtype/code in bytes

        Args:
            key (Union[int, Type[numpy.number]]): The dtype or code

        Raises:
            ValueError: If the key is neither dtype nor integer code

        Returns:
            int: The size of the dtype/code in in bytes
        """
        if isinstance(key, int):
            return DType.dtype_from_code(key)().itemsize
        elif numpy.number in key.__mro__:
            return key().itemsize
        else:
            raise ValueError

    @staticmethod
    def optimal_dtype(cardinality: Optional[int]) -> Type[numpy.number]:
        """Get the dtype to use for an index of a certain cardinality

        Args:
            cardinality (Optional[int]): The number of elements to be indexed

        Returns:
            Type[numpy.number]: The dtype to use for the index
        """
        if cardinality is not None and cardinality < 65500:
            return numpy.uint16
        else:
            return numpy.int32


class _IndexWriter(object):
    """Object class to write the index (.idx) file

    Args:
        idx_path (str): The path to the index file

        dtype (Type[numpy.number]): The dtype of the index file
    """

    def __init__(self, idx_path: str, dtype: Type[numpy.number]) -> None:
        self.idx_path = idx_path
        self.dtype = dtype

    def __enter__(self) -> "_IndexWriter":
        """Enter the context introduced by the 'with' keyword

        Returns:
            _IndexWriter: The instance
        """
        self.idx_writer = open(self.idx_path, "wb")
        # fixed, vestigial practice
        self.idx_writer.write(_INDEX_HEADER)
        # fixed, vestigial practice
        self.idx_writer.write(struct.pack("<Q", 1))
        # the numeric code for the dtype
        self.idx_writer.write(struct.pack("<B", DType.code_from_dtype(self.dtype)))
        return self

    def __exit__(
        self,
        exc_type: Optional[Type[BaseException]],
        exc_val: Optional[BaseException],
        exc_tb: Optional[TracebackType],
    ) -> Optional[bool]:
        """Exit the context introduced by the 'with' keyword

        Args:
            exc_type (Optional[Type[BaseException]]): Exception type

            exc_val (Optional[BaseException]): Exception value

            exc_tb (Optional[TracebackType]): Exception traceback object

        Returns:
            Optional[bool]: Whether to silence the exception
        """
        self.idx_writer.close()

    def write(
        self,
        sequence_lengths: List[int],
        sequence_modes: Optional[List[int]],
        document_indices: List[int],
    ) -> None:
        """Write the index (.idx) file

        Args:
            sequence_lengths (List[int]): The length of each sequence

            sequence_modes (Optional[List[int]]): The mode of each sequences

            document_indices (List[int]): The seqyebce indices demarcating the end of each document
        """
        sequence_pointers = self._sequence_pointers(sequence_lengths)

        # the number of sequences in the dataset
        sequence_count = len(sequence_lengths)
        self.idx_writer.write(struct.pack("<Q", sequence_count))

        # the number of documents in the dataset
        document_count = len(document_indices)
        self.idx_writer.write(struct.pack("<Q", document_count))

        # the number of tokens per sequence
        sequence_lengths = numpy.array(sequence_lengths, dtype=numpy.int32)
        self.idx_writer.write(sequence_lengths.tobytes(order="C"))
        del sequence_lengths

        # the byte offsets for all sequences
        sequence_pointers = numpy.array(sequence_pointers, dtype=numpy.int64)
        self.idx_writer.write(sequence_pointers.tobytes(order="C"))
        del sequence_pointers

        # the sequence indices marking the end of each document
        document_indices = numpy.array(document_indices, dtype=numpy.int64)
        self.idx_writer.write(document_indices.tobytes(order="C"))

        # the mode per sequence
        if sequence_modes is not None:
            sequence_modes = numpy.array(sequence_modes, dtype=numpy.int8)
            self.idx_writer.write(sequence_modes.tobytes(order='C'))
            del sequence_modes

    def _sequence_pointers(self, sequence_lengths: List[int]) -> List[int]:
        """Build the sequence pointers per the sequence lengths and dtype size

        Args:
            sequence_lengths (List[int]): The length of each sequence

        Returns:
            List[int]: The pointer to the beginning of each sequence
        """
        itemsize = DType.size(self.dtype)
        curr_ptr = 0
        list_ptr = []
        for length in sequence_lengths:
            list_ptr.append(curr_ptr)
            curr_ptr += length * itemsize
        return list_ptr


class _IndexReader(object):
    """Object class to read the index (.idx) file

    Args:
        idx_path (str): The path to the index file

        multimodal (bool): Whether the dataset is multimodal
    """

    def __init__(self, idx_path: str, multimodal: bool) -> None:

        log_single_rank(logger, logging.INFO, f"Load the {type(self).__name__} from {idx_path}")

        with open(idx_path, "rb") as stream:
            header = stream.read(9)
            assert header == _INDEX_HEADER, f"bad header, cannot read: {idx_path}"

            version = struct.unpack("<Q", stream.read(8))[0]
            assert version == 1, f"bad version, cannot read: {idx_path}"

            code = struct.unpack("<B", stream.read(1))[0]
            self.dtype = DType.dtype_from_code(code)
            self.dtype_size = DType.size(self.dtype)

            self.sequence_count = struct.unpack("<Q", stream.read(8))[0]
            self.document_count = struct.unpack("<Q", stream.read(8))[0]

            offset = stream.tell()

        self.bin_buffer_mmap = numpy.memmap(idx_path, mode="r", order="C")
        self.bin_buffer = memoryview(self.bin_buffer_mmap)

        log_single_rank(logger, logging.INFO, f"\tExtract the sequence lengths")
        t_beg = time.time()
        self.sequence_lengths = numpy.frombuffer(
            self.bin_buffer, dtype=numpy.int32, count=self.sequence_count, offset=offset
        )
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(logger, logging.INFO, f"\tExtract the sequence pointers")
        t_beg = time.time()
        self.sequence_pointers = numpy.frombuffer(
            self.bin_buffer,
            dtype=numpy.int64,
            count=self.sequence_count,
            offset=offset + self.sequence_lengths.nbytes,
        )
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(logger, logging.INFO, f"\tExtract the document indices")
        t_beg = time.time()
        self.document_indices = numpy.frombuffer(
            self.bin_buffer,
            dtype=numpy.int64,
            count=self.document_count,
            offset=offset + self.sequence_lengths.nbytes + self.sequence_pointers.nbytes,
        )
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        self.sequence_modes = None
        if multimodal:
            log_single_rank(logger, logging.INFO, f"\tExtract the sequence modes")
            t_beg = time.time()
            self.sequence_modes = numpy.frombuffer(
                self.bin_buffer,
                dtype=numpy.int8,
                count=self.sequence_count,
                offset=offset
                + self.sequence_lengths.nbytes
                + self.sequence_pointers.nbytes
                + self.document_indices.nbytes,
            )
            t_end = time.time()
            log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        assert self.sequence_lengths.shape[0] == len(self)
        assert self.sequence_lengths.shape[0] == self.sequence_count
        assert self.sequence_lengths.shape[0] == self.document_indices[-1]

        log_single_rank(logger, logging.INFO, f"> total number of sequences: {len(self)}")
        log_single_rank(
            logger,
            logging.INFO,
            f"> total number of documents: {self.document_indices.shape[0] - 1}",
        )

    def __del__(self) -> None:
        """Clean up the object"""
        if hasattr(self, "bin_buffer_mmap"):
            self.bin_buffer_mmap._mmap.close()
            del self.bin_buffer_mmap

    def __len__(self) -> int:
        """Return the length of the dataset

        Returns:
            int: The length of the dataset
        """
        return self.sequence_count

    @lru_cache(maxsize=8)
    def __getitem__(self, idx: int) -> Tuple[numpy.int32, numpy.int64, Optional[numpy.int8]]:
        """Return the pointer, length, and mode at the index

        Args:
            idx (int): The index into the dataset

        Returns:
            Tuple[numpy.int32, numpy.int64, Optional[numpy.int8]]: The pointer, length and mode at the index
        """
        return (
            self.sequence_pointers[idx],
            self.sequence_lengths[idx],
            self.sequence_modes[idx] if self.sequence_modes is not None else None,
        )


class _BinReader(ABC):
    """Abstract class to read the data (.bin) file"""

    @abstractmethod
    def read(self, dtype: Type[numpy.number], count: int, offset: int) -> numpy.ndarray:
        """Read bytes into a numpy array.

        Args:
            dtype (Type[numpy.number]): Data-type of the returned array.

            count (int): Number of items to read.

            offset (int): Start reading from this offset (in bytes).

        Returns:
            numpy.ndarray: An array with `count` items and data-type `dtype` constructed from reading bytes from the data file starting at `offset`.
        """
        pass


class _MMapBinReader(_BinReader):
    """A _BinReader that memory maps the data (.bin) file

    Args:
        bin_path (str): bin_path (str): The path to the data (.bin) file.
    """

    def __init__(self, bin_path: str) -> None:
        self._bin_buffer_mmap = numpy.memmap(bin_path, mode="r", order="C")
        self._bin_buffer = memoryview(self._bin_buffer_mmap)

    def read(self, dtype: Type[numpy.number], count: int, offset: int) -> numpy.ndarray:
        """Read bytes into a numpy array.

        Args:
            dtype (Type[numpy.number]): Data-type of the returned array.

            count (int): Number of items to read.

            offset (int): Start reading from this offset (in bytes).

        Returns:
            numpy.ndarray: An array with `count` items and data-type `dtype` constructed from reading bytes from the data file starting at `offset`.
        """
        return numpy.frombuffer(self._bin_buffer, dtype=dtype, count=count, offset=offset)

    def __del__(self) -> None:
        """Clean up the object."""
        if self._bin_buffer_mmap is not None:
            self._bin_buffer_mmap._mmap.close()
        del self._bin_buffer_mmap


class _FileBinReader(_BinReader):
    """A _BinReader that reads from the data (.bin) file using a file pointer

    Args:
        bin_path (str): bin_path (str): The path to the data (.bin) file.
    """

    def __init__(self, bin_path: str) -> None:
        self._bin_path = bin_path

    def read(self, dtype: Type[numpy.number], count: int, offset: int) -> numpy.ndarray:
        """Read bytes into a numpy array.

        Args:
            dtype (Type[numpy.number]): Data-type of the returned array.

            count (int): Number of items to read.

            offset (int): Start reading from this offset (in bytes).

        Returns:
            numpy.ndarray: An array with `count` items and data-type `dtype` constructed from reading bytes from the data file starting at `offset`.
        """
        sequence = numpy.empty(count, dtype=dtype)
        with open(self._bin_path, mode='rb', buffering=0) as bin_buffer_file:
            bin_buffer_file.seek(offset)
            bin_buffer_file.readinto(sequence)
        return sequence


class _S3BinReader(_BinReader):
    """A _BinReader that reads from the data (.bin) file from S3

    Args:
        bin_path (str): bin_path (str): The path to the data (.bin) file.

        bin_chunk_nbytes (int, optional): If not None, then maintain an in-memory cache to speed up calls to the `read` method. Furthermore, on a cache miss, download this number of bytes to refresh the cache. Otherwise (None), do not maintain an in-memory cache. A class that inherits from _BinReader may not implement caching in which case it should assert that `bin_chunk_nbytes` is None at initialization.
    """

    def __init__(self, bin_path: str, bin_chunk_nbytes: int) -> None:
        assert bin_chunk_nbytes > 0
        self._client = boto3.client("s3")
        self._s3_bucket, self._s3_key = parse_s3_path(bin_path)
        self._cache = None
        self._cache_bytes_start = None
        self._cache_bytes_end = None
        self._cache_nbytes = bin_chunk_nbytes

    def _extract_from_cache(self, offset: int, size: int) -> bytes:
        """Extract `size` bytes starting at `offset` bytes into the cache"""
        start = offset - self._cache_bytes_start
        assert start >= 0
        end = start + size
        assert end <= len(self._cache)
        return self._cache[start:end]

    def read(self, dtype: Type[numpy.number], count: int, offset: int) -> numpy.ndarray:
        """Read bytes into a numpy array.

        Let `size` be the `count` * `DType.size(dtype)`. If the requested span of bytes [`offset`,
        `offset` + `size`) is covered by the in-memory cache maintained by this class, then this
        function extracts the requested span from that cache and returns it. Otherwise, this
        function first refreshes the cache and then extracts the requested span from the refreshed
        cache and returns it.

        The cache is refreshed based on `offset` and `size`. In particular, we divide all the bytes
        in an S3 object into blocks, where each block contains `bin_chunk_nbytes` bytes. We assign
        each block an index starting from 0. We take the block with index (`offset` //
        `bin_chunk_nbytes`) to refresh the cache. If this new block still does not cover the
        requested span, we extend it just enough to include `offset` + `size`.

        Args:
            dtype (Type[numpy.number]): Data-type of the returned array.

            count (int): Number of items to read.

            offset (int): Start reading from this offset (in bytes).

        Returns:
            numpy.ndarray: An array with `count` items and data-type `dtype` constructed from reading bytes from the data file starting at `offset`.
        """
        size = count * DType.size(dtype)
        if (
            self._cache is not None
            and offset >= self._cache_bytes_start
            and offset + size <= self._cache_bytes_end
        ):
            return numpy.frombuffer(self._extract_from_cache(offset, size), dtype=dtype)

        bytes_start = (offset // self._cache_nbytes) * self._cache_nbytes
        assert bytes_start >= 0
        assert offset >= bytes_start
        bytes_end = max(bytes_start + self._cache_nbytes, offset + size)
        assert bytes_end >= 1
        self._cache = self._client.get_object(
            Bucket=self._s3_bucket,
            Key=self._s3_key,
            # Subtract 1, because the end of Range is inclusive.
            Range=f'bytes={bytes_start}-{bytes_end-1}',
        )['Body'].read()
        self._cache_bytes_start = bytes_start
        self._cache_bytes_end = bytes_end
        return numpy.frombuffer(self._extract_from_cache(offset, size), dtype=dtype)

    def __del__(self) -> None:
        """Clean up the object"""
        self._client.close()


class IndexedDataset(torch.utils.data.Dataset):
    """The low-level interface dataset class

    Args:
        path_prefix (str): The index (.idx) and data (.bin) prefix

        multimodal (bool): Whether the dataset is multimodal. Defaults to False.

        mmap (bool): Whether to mmap the .bin files. Defaults to True.

        s3_config (Optional[S3Config]): Supplied only for data stored on S3. IndexedDataset downloads the index (.idx) file to `s3_config.path_to_idx_cache` and streams data from the data (.bin) file in `s3_config.bin_chunk_nbytes` blocks. Note that `mmap` must be disabled for S3 data loading. Defaults to None.
    """

    def __init__(
        self,
        path_prefix: str,
        multimodal: bool = False,
        mmap: bool = True,
        s3_config: Optional[S3Config] = None,
    ) -> None:
        super().__init__()
        self.path_prefix = None
        self.multimodal = None
        self.mmap = None
        self.s3_config = None

        self.index = None
        self.bin_reader = None

        if is_s3_path(path_prefix) and s3_config is not None:
            idx_path = get_idx_path(path_prefix)
            cache_idx_path = os.path.join(s3_config.path_to_idx_cache, os.path.basename(idx_path))
            maybe_download_file(idx_path, cache_idx_path)

        self.initialize(path_prefix, multimodal, mmap, s3_config)

    def initialize(
        self, path_prefix: str, multimodal: bool, mmap: bool, s3_config: Optional[S3Config]
    ) -> None:
        """Initialize the dataset

        This method is called by IndexedDataset.__init__ during object creation and by
        IndexedDataset.__setstate__ during un-pickling

        Args:
            path_prefix (str): The index (.idx) and data (.bin) prefix

            multimodal (bool): Whether the dataset is multimodal

            mmap (bool): Whether to mmap the .bin file

            s3_config (Optional[S3Config]): See IndexedDataset docstring for details.
        """
        idx_path = get_idx_path(path_prefix)
        bin_path = get_bin_path(path_prefix)
        if s3_config is None:
            assert os.path.exists(idx_path) and os.path.exists(
                bin_path
            ), f"One or both of the .idx and .bin files cannot be found at the path prefix {path_prefix}"
        self.path_prefix = path_prefix
        self.multimodal = multimodal
        self.mmap = mmap
        self.s3_config = s3_config
        if mmap:
            assert not s3_config
            self.bin_reader = _MMapBinReader(bin_path)
        elif s3_config:
            assert not mmap
            self.bin_reader = _S3BinReader(bin_path, s3_config.bin_chunk_nbytes)
            idx_path = os.path.join(
                s3_config.path_to_idx_cache, os.path.basename(get_idx_path(path_prefix))
            )
        else:
            self.bin_reader = _FileBinReader(bin_path)
        self.index = _IndexReader(idx_path, self.multimodal)

    def __getstate__(self) -> Tuple[str, bool, bool, Optional[S3Config]]:
        """Get the state during pickling

        Returns:
            Tuple[str, bool, bool, Optional[S3Config]]: The state tuple
        """
        return self.path_prefix, self.multimodal, self.mmap, self.s3_config

    def __setstate__(self, state: Tuple[str, bool, bool, Optional[S3Config]]) -> None:
        """Set the state during un-pickling

        Args:
            state (Tuple[str, bool, bool, Optional[S3Config]]): The state tuple
        """
        path_prefix, multimodal, mmap, s3_config = state
        self.initialize(path_prefix, multimodal, mmap, s3_config)

    def __del__(self) -> None:
        """Clean up the object"""
        del self.bin_reader
        del self.index

    def __len__(self) -> int:
        """Return the length of the dataset i.e. the number of sequences in the index

        Returns:
            int: The length of the dataset
        """
        return len(self.index)

    def __getitem__(
        self, idx: Union[int, numpy.integer, slice]
    ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]:
        """Return from the dataset

        Args:
            idx (Union[int, numpy.integer, slice]): The index or index slice into the dataset

        Raises:
            ValueError: When the index slice is non-contiguous

            TypeError: When the index is of an unexpected type

        Returns:
            Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: The sequence tokens and modes at the index or index slice
        """
        if isinstance(idx, (int, numpy.integer)):
            sequence_pointer, sequence_length, sequence_mode = self.index[idx]
            sequence = self.bin_reader.read(
                dtype=self.index.dtype, count=sequence_length, offset=sequence_pointer
            )
            return (sequence, sequence_mode) if sequence_mode is not None else sequence
        elif isinstance(idx, slice):
            start, stop, step = idx.indices(len(self))
            if step != 1:
                raise ValueError("Slices into indexed_dataset must be contiguous")
            sequence_lengths = self.index.sequence_lengths[idx]
            sequence_modes = self.index.sequence_modes[idx] if self.multimodal else None
            sequence_offsets = list(accumulate(sequence_lengths))
            sequences = numpy.split(
                self.bin_reader.read(
                    dtype=self.index.dtype,
                    count=sum(sequence_lengths),
                    offset=self.index.sequence_pointers[start],
                ),
                sequence_offsets[:-1],
            )
            return (sequences, sequence_modes) if sequence_modes is not None else sequences
        else:
            raise TypeError("Unexpected type received for idx: {}".format(type(idx)))

    def get(self, idx: int, offset: int = 0, length: Optional[int] = None) -> numpy.ndarray:
        """Retrieve a single item from the dataset with the option to only
        return a portion of the item.

        get(idx) is the same as [idx] but get() does not support slicing.

        Args:
            idx (Union[int, numpy.integer]): The index into the dataset

            offset (int): The integer token offset in the sequence

            length (int): The number of tokens to grab from the sequence

        Returns:
            Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: The sequence tokens and modes at the index
        """
        sequence_pointer, sequence_length, sequence_mode = self.index[idx]
        if length is None:
            length = sequence_length - offset
        sequence_pointer += offset * DType.size(self.index.dtype)
        sequence = self.bin_reader.read(
            dtype=self.index.dtype, count=length, offset=sequence_pointer
        )
        return (sequence, sequence_mode) if sequence_mode is not None else sequence

    @property
    def sequence_lengths(self) -> numpy.ndarray:
        """Get the sequence lengths

        Returns:
            numpy.ndarray: The sequence lengths
        """
        return self.index.sequence_lengths

    @property
    def document_indices(self) -> numpy.ndarray:
        """Get the document indices

        Returns:
            numpy.ndarray: The document indices
        """
        return self.index.document_indices

    def get_document_indices(self) -> numpy.ndarray:
        """Get the document indices

        This method is slated for deprecation.

        Returns:
            numpy.ndarray: The document indices
        """
        return self.index.document_indices

    def set_document_indices(self, document_indices: numpy.ndarray) -> None:
        """Set the document indices

        This method is slated for deprecation.

        Args:
            document_indices (numpy.ndarray): The document indices
        """
        self.index.document_indices = document_indices

    @property
    def sequence_modes(self) -> numpy.ndarray:
        """Get the sequence modes

        Returns:
            numpy.ndarray: The sequence modes
        """
        return self.index.sequence_modes

    @staticmethod
    def exists(path_prefix: str) -> bool:
        """Return whether the IndexedDataset exists on disk at the prefix

        Args:
            path_prefix (str): The prefix to the index (.idx) and data (.bin) files

        Returns:
            bool: Whether the IndexedDataset exists on disk at the prefix
        """
        if is_s3_path(path_prefix):
            s3_client = boto3.client("s3")
            return object_exists(s3_client, get_idx_path(path_prefix)) and object_exists(
                s3_client, get_bin_path(path_prefix)
            )
        return os.path.exists(get_idx_path(path_prefix)) and os.path.exists(
            get_bin_path(path_prefix)
        )


class IndexedDatasetBuilder(object):
    """Builder class for the IndexedDataset class

    Args:
        bin_path (str): The path to the data (.bin) file

        dtype (Type[numpy.number], optional): The dtype of the index file. Defaults to numpy.int32.

        multimodal (bool, optional): Whether the dataset is multimodal. Defaults to False.
    """

    def __init__(
        self, bin_path: str, dtype: Type[numpy.number] = numpy.int32, multimodal: bool = False
    ) -> None:
        self.data_file = open(bin_path, "wb")
        self.dtype = dtype
        self.multimodal = multimodal

        self.sequence_lengths = []
        self.document_indices = [0]
        self.sequence_modes = [] if self.multimodal else None

    def add_item(self, tensor: torch.Tensor, mode: int = 0) -> None:
        """Add a single item to the dataset

        Args:
            tensor (torch.Tensor): The item to add to the data file

            mode (int, optional): The mode for the item. Defaults to 0.
        """
        np_array = numpy.array(tensor.numpy(), dtype=self.dtype)
        self.data_file.write(np_array.tobytes(order="C"))
        self.sequence_lengths.append(np_array.size)
        if self.multimodal:
            self.sequence_modes.append(mode)

    def add_document(
        self, tensor: torch.Tensor, lengths: List[int], modes: Optional[List[int]] = None
    ) -> None:
        """Add an entire document to the dataset

        Args:
            tensor (torch.Tensor): The document to add

            lengths (List[int]): The lengths of each item in the document

            modes (Optional[List[int]], optional): The modes for each item in the document. Defaults to None.
        """
        np_array = numpy.array(tensor, dtype=self.dtype)
        self.data_file.write(np_array.tobytes(order="C"))
        self.sequence_lengths.extend(lengths)
        self.document_indices.append(len(self.sequence_lengths))
        if self.multimodal:
            self.sequence_modes.extend(modes if modes is not None else [0] * lengths)

    def end_document(self) -> None:
        """Finalize the document, for use with IndexedDatasetBuilder.add_item"""
        self.document_indices.append(len(self.sequence_lengths))

    def add_index(self, path_prefix: str) -> None:
        """Add an entire IndexedDataset to the dataset

        Args:
            path_prefix (str): The index (.idx) and data (.bin) prefix
        """
        # Concatenate index
        index = _IndexReader(get_idx_path(path_prefix), multimodal=self.multimodal)
        assert index.dtype == self.dtype

        offset = len(self.sequence_lengths)
        self.sequence_lengths.extend(index.sequence_lengths)
        self.document_indices.extend((offset + index.document_indices)[1:])

        if self.multimodal:
            self.sequence_modes.extend(index.sequence_modes)

        # Concatenate data
        with open(get_bin_path(path_prefix), "rb") as f:
            shutil.copyfileobj(f, self.data_file)

    def finalize(self, idx_path: str) -> None:
        """Clean up and write the index (.idx) file

        Args:
            idx_path (str): The path to the index file
        """
        self.data_file.close()
        with _IndexWriter(idx_path, self.dtype) as writer:
            writer.write(self.sequence_lengths, self.sequence_modes, self.document_indices)


def get_idx_path(path_prefix: str) -> str:
    """Get the path to the index file from the prefix

    Args:
        path_prefix (str): The prefix

    Returns:
        str: The path to the index file
    """
    return path_prefix + ".idx"


def get_bin_path(path_prefix: str) -> str:
    """Get the path to the data file from the prefix

    Args:
        path_prefix (str): The prefix

    Returns:
        str: The path to the data file
    """
    return path_prefix + ".bin"