blended_dataset.py 7.85 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

import hashlib
import json
import logging
import os
import time
from collections import OrderedDict
from typing import Dict, List, Optional, Tuple, Union

import numpy
import torch

from megatron.core.datasets.blended_megatron_dataset_config import BlendedMegatronDatasetConfig
from megatron.core.datasets.megatron_dataset import MegatronDataset
from megatron.core.datasets.utils import normalize
from megatron.core.utils import log_single_rank

logger = logging.getLogger(__name__)

_VERBOSE = False


class BlendedDataset(torch.utils.data.Dataset):
    """Conjugating class for a set of MegatronDataset instances

    Args:
        datasets (List[MegatronDataset]): The MegatronDataset instances to blend

        weights (List[Union[int, float]]): The weights that determine the dataset blend ratios

        size (Optional[int]): The number of samples to draw from the blend. If None, for each dataset index idx draw exactly weights[idx] samples from datasets[idx].

        config (BlendedMegatronDatasetConfig): The config

    Raises:
        RuntimeError: When the dataset has fewer or more samples than 'size' post-initialization
    """

    def __init__(
        self,
        datasets: List[MegatronDataset],
        weights: List[Union[int, float]],
        size: Optional[int],
        config: BlendedMegatronDatasetConfig,
    ) -> None:
        assert len(datasets) == len(weights)
        assert len(datasets) < 32767
        assert all(map(lambda _: type(_) == type(datasets[0]), datasets))
        assert all(map(lambda _: _.index_split == datasets[0].index_split, datasets))
        assert all(map(lambda _: _ > 0, weights))
        assert all(map(lambda _: type(_) == type(weights[0]), weights))
        if size is None and isinstance(weights[0], float):
            assert all(map(lambda _: _ == int(_), weights))

        # Alert user to unnecessary blending
        if len(datasets) == 1:
            log_single_rank(
                logger, logging.WARNING, f"Building a BlendedDataset for a single MegatronDataset"
            )

        if size is not None:
            weights = normalize(weights)

        self.datasets = datasets
        self.split = self.datasets[0].index_split
        self.weights = weights
        self.size = size
        self.config = config

        unique_identifiers = OrderedDict()
        unique_identifiers["class"] = type(self).__name__
        unique_identifiers["datasets"] = [dataset.unique_identifiers for dataset in self.datasets]
        unique_identifiers["split"] = self.split.name
        unique_identifiers["weights"] = self.weights
        unique_identifiers["size"] = self.size
        unique_identifiers["renormalize_blend_weights"] = self.config.renormalize_blend_weights

        self.unique_description = json.dumps(
            unique_identifiers, indent=4, default=lambda obj: obj.unique_identifiers
        )
        self.unique_description_hash = hashlib.md5(
            self.unique_description.encode("utf-8")
        ).hexdigest()

        self.built_anew_on_cache_miss = False

        self.dataset_index, self.dataset_sample_index = self._build_indices()

    def __len__(self) -> int:
        return self.dataset_index.shape[0]

    def __getitem__(self, idx: int) -> Dict[str, Union[int, numpy.ndarray]]:
        dataset_id = self.dataset_index[idx]
        dataset_sample_id = self.dataset_sample_index[idx]
        return {"dataset_id": dataset_id, **self.datasets[dataset_id][dataset_sample_id]}

    def _build_indices(self) -> Tuple[numpy.ndarray, numpy.ndarray]:
        """Build and optionally cache the dataset index and the dataset sample index

        The dataset index is a 1-D mapping which determines the dataset to query. The dataset
        sample index is a 1-D mapping which determines the sample to request from the queried
        dataset.

        Returns:
            Tuple[numpy.ndarray, numpy.ndarray]: The dataset index and the dataset sample index
        """
        path_to_cache = self.config.path_to_cache

        if path_to_cache:
            get_path_to = lambda suffix: os.path.join(
                path_to_cache,
                f"{self.unique_description_hash}-{type(self).__name__}-{self.split.name}-{suffix}",
            )
            path_to_description = get_path_to("description.txt")
            path_to_dataset_index = get_path_to("dataset_index.npy")
            path_to_dataset_sample_index = get_path_to("dataset_sample_index.npy")
            cache_hit = all(
                map(
                    os.path.isfile,
                    [path_to_description, path_to_dataset_index, path_to_dataset_sample_index],
                )
            )
        else:
            cache_hit = False

        if not path_to_cache or (not cache_hit and torch.distributed.get_rank() == 0):
            log_single_rank(
                logger, logging.INFO, f"Build and save the {type(self).__name__} indices"
            )
            self.built_anew_on_cache_miss = True

            # Build the dataset and dataset sample indexes
            log_single_rank(
                logger, logging.INFO, f"\tBuild and save the dataset and dataset sample indexes"
            )
            t_beg = time.time()
            from megatron.core.datasets import helpers

            if self.size is not None:
                dataset_index = numpy.zeros(self.size, dtype=numpy.int16)
                dataset_sample_index = numpy.zeros(self.size, dtype=numpy.int64)
                helpers.build_blending_indices(
                    dataset_index,
                    dataset_sample_index,
                    self.weights,
                    len(self.datasets),
                    self.size,
                    _VERBOSE,
                )
            else:
                size = sum(self.weights)
                dataset_index = numpy.zeros(size, dtype=numpy.int16)
                dataset_sample_index = numpy.zeros(size, dtype=numpy.int64)
                helpers.build_exhaustive_blending_indices(
                    dataset_index, dataset_sample_index, self.weights, len(self.datasets)
                )

            if path_to_cache:
                os.makedirs(path_to_cache, exist_ok=True)
                # Write the description
                with open(path_to_description, "wt") as writer:
                    writer.write(self.unique_description)
                # Save the indexes
                numpy.save(path_to_dataset_index, dataset_index, allow_pickle=True)
                numpy.save(path_to_dataset_sample_index, dataset_sample_index, allow_pickle=True)
            else:
                log_single_rank(
                    logger,
                    logging.WARNING,
                    f"Unable to save the {type(self).__name__} indexes because path_to_cache is None",
                )

            t_end = time.time()
            log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

            return dataset_index, dataset_sample_index

        log_single_rank(logger, logging.INFO, f"Load the {type(self).__name__} indices")

        log_single_rank(
            logger, logging.INFO, f"\tLoad the dataset index from {path_to_dataset_index}"
        )
        t_beg = time.time()
        dataset_index = numpy.load(path_to_dataset_index, allow_pickle=True, mmap_mode='r')
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        log_single_rank(
            logger,
            logging.INFO,
            f"\tLoad the dataset sample index from {path_to_dataset_sample_index}",
        )
        t_beg = time.time()
        dataset_sample_index = numpy.load(
            path_to_dataset_sample_index, allow_pickle=True, mmap_mode='r'
        )
        t_end = time.time()
        log_single_rank(logger, logging.DEBUG, f"\t> time elapsed: {t_end - t_beg:4f} seconds")

        return dataset_index, dataset_sample_index