README.md 1.83 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# T5 MODEL

## Table of contents
- [1. Training Setup](#1-training-setup)
- [2. Configurations](#2-configurations)
- [3. Training Results](#3-training-results)

## 1. Training setup
<a id="markdown-training-setup" name="training-setup"></a>
To run the model on a Slurm based cluster  
```
PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:23.09-py3
ACCOUNT_NAME="" 
PARTITION=""
JOB_NAME=""
NUM_NODES=1
CHECKPOINT_PATH="" #<Specify path to checkpoint>
TENSORBOARD_LOGS_PATH=""#<Specify path to tensorboard log>
VOCAB_FILE="" #<Specify path to file>/bert-large-cased-vocab.txt
DATA_PATH="" #<Specify path and file prefix>_text_document

srun -N $NUM_NODES --container-image $PYTORCH_IMAGE --container-mounts "/path/to/data:/path/to/data,/path/to/megatron-lm:/workspace/megatron-lm" --account $ACCOUNT -N 1 -J $JOB_NAME  -p $PARTITION --no-container-mount-home  -c "
  cd /workspace/megatron-lm
  ./examples/t5/train_t5_220m_distributed.sh $CHECKPOINT_PATH $TENSORBOARD_LOGS_PATH $VOCAB_FILE $DATA_PATH"

```

## 2. Configurations
<a id="markdown-configurations" name="configurations"></a>
The architecture arguments below shows configuration for T5 220M model. 

### 220M 
```
       --num-layers 12 \
       --hidden-size 768 \
       --num-attention-heads 12 \
       --kv-channels 64 \
       --ffn-hidden-size 3072 \
       --encoder-seq-length 512 \
       --decoder-seq-length 128 \
       --max-position-embeddings 512 \
       --tensor-model-parallel-size 1 \
       --pipeline-model-parallel-size 1 \

```


## 3. Training Results
<a id="markdown-training-results" name="training-results"></a>
Below is the training curve for the 220M model on Pile dataset. The training takes 4 days on 32 GPUs, with batch size of 2048. 

Finetuning on SQUAD dataset, the validation result is: 63.44\%
<p align="center">
<img src="./t5_mcore_train_curve.png"  width="800" height="400">
</p>