sft_qwen20_72b_internvit_6b.sh 4.36 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/bin/bash

# Your SBATCH commands here if using SLURM.

# Please launch this script from megatron-lm root.

# Train a multimodal model.

export NCCL_IB_SL=1
export CUDA_DEVICE_MAX_CONNECTIONS=1
export NCCL_ALGO=^NVLS
export TOKENIZERS_PARALLELISM="false"

DEBUG=0

if [[ $BATCH -eq 0 ]]; then
    DATETIME=`date +'%y-%m-%d-%H-%M-%S'`
    MODEL_NAME="mcore-qwen20-72b-internvit-sft-${DATETIME}"
else
    MODEL_NAME="mcore-qwen20-72b-internvit-sft"
fi

WORKSPACE="<some dir>"
SOURCE=`pwd`
OUTPUT_BASE="${WORKSPACE}/output"
OUTPUT="${OUTPUT_BASE}/${MODEL_NAME}"

FINETUNE_DIR="${OUTPUT}/checkpoints"
LOGS_DIR="${OUTPUT}/logs"
TENSORBOARD_DIR="${OUTPUT}/tensorboard"

# From pretraining. The pretraining checkpoint must be manually split to 4 pipeline parallel stages.
# Please refer to README.md and run examples/multimodal/nvlm/pp_checkpoint_converter.py.
LOAD_NAME="mcore-qwen20-72b-internvit-pp4"

CHECKPOINT_DIR="${WORKSPACE}/output/${LOAD_NAME}/checkpoints"

DATA_TRAIN="${SOURCE}/examples/multimodal/nvlm/sft_blend.yaml"

if [[ $DEBUG -eq 1 ]]; then
    MBZ=1
    BZ=1
    NW=0
    AD=0.0
    HD=0.0
    LI=1
    # This is just for interactive testing purposes. Do not use for proper training.
    EXTRA_ARGS="--freeze-LM"
    ALLOW_NONDETERMINISTIC=1
else
    MBZ=1
    BZ=256
    NW=8
    AD=0.0
    HD=0.0
    LI=5
    EXTRA_ARGS=""
    ALLOW_NONDETERMINISTIC=1
fi

SEQ_LEN=261     # Image embeddings sequence length (256 image embeddings + 5 tile tag embeddings).
DECODER_SEQ_LEN=3200    # Language model sequence length.
MAX_POS_EMBED=8192

OPTIONS=" \
    --use-checkpoint-args \
    --exit-duration-in-mins 230 \
    --disable-bias-linear \
    --tokenizer-type MultimodalTokenizer \
    --tokenizer-model ${WORKSPACE}/<tokenizer model path> \
    --tokenizer-prompt-format qwen2p0 \
    --transformer-impl transformer_engine \
    --normalization RMSNorm \
    --norm-epsilon 1e-06 \
    --group-query-attention \
    --num-query-groups 8 \
    --no-masked-softmax-fusion \
    --attention-softmax-in-fp32 \
    --attention-dropout ${AD} \
    --hidden-dropout ${HD} \
    --untie-embeddings-and-output-weights \
    --position-embedding-type rope \
    --rotary-percent 1.0 \
    --rotary-base 1000000 \
    --swiglu \
    --tensor-model-parallel-size 8  \
    --pipeline-model-parallel-size 4 \
    --num-layers 80 \
    --hidden-size 8192 \
    --ffn-hidden-size 29568 \
    --add-qkv-bias \
    --num-attention-heads 64  \
    --use-distributed-optimizer \
    --use-te \
    --num-workers ${NW} \
    --seq-length ${SEQ_LEN} \
    --decoder-seq-length ${DECODER_SEQ_LEN} \
    --max-position-embeddings 32768 \
    --train-samples 122880000 \
    --lr-decay-samples 25600000 \
    --lr-warmup-samples 83200 \
    --micro-batch-size ${MBZ} \
    --global-batch-size ${BZ} \
    --lr 2e-6 \
    --min-lr 2.5e-7 \
    --lr-decay-style cosine \
    --log-interval ${LI} \
    --eval-iters 10 \
    --eval-interval 500 \
    --data-path ${DATA_TRAIN} \
    --prompt-path ${SOURCE}/examples/multimodal/nvlm/nvlm_prompts.json \
    --save-interval 10000 \
    --save ${FINETUNE_DIR} \
    --load ${FINETUNE_DIR} \
    --dataloader-save ${FINETUNE_DIR}/dataloader \
    --pretrained-checkpoint ${CHECKPOINT_DIR} \
    --split 100,0,0 \
    --clip-grad 10.0 \
    --weight-decay 0.1 \
    --adam-beta1 0.9 \
    --adam-beta2 0.95 \
    --init-method-std 0.014 \
    --bf16 \
    --eod-mask-loss \
    --freeze-ViT \
    --patch-dim 14 \
    --img-h 448 \
    --img-w 448 \
    --dataloader-type external \
    --tensorboard-dir ${TENSORBOARD_DIR} \
    --language-model-type qwen2.0_72B \
    ${EXTRA_ARGS} \
    --vision-model-type internvit \
    --disable-vision-class-token \
    --log-params-norm \
    --log-num-zeros-in-grad \
    --ckpt-format torch \
    --pixel-shuffle \
    --use-tiling \
    --max-num-tiles 6 \
    --use-thumbnail \
    --use-tile-tags \
    --image-tag-type nvlm
"


export NVTE_APPLY_QK_LAYER_SCALING=0
export NVTE_ALLOW_NONDETERMINISTIC_ALGO=${ALLOW_NONDETERMINISTIC}

# Interactive or batch mode
if [[ $BATCH -eq 0 ]]; then
    torchrun --nproc_per_node 8 examples/multimodal/train.py ${OPTIONS}
else
    run_cmd="python -u ${SOURCE}/examples/multimodal/train.py ${OPTIONS}"

    DATETIME=`date +'date_%y-%m-%d_time_%H-%M-%S'`

    srun -l --verbose \
    --container-image <path to docker image> \
    --container-mounts "<some mount>" \
    --output=${LOGS_DIR}/%x_%j_$DATETIME.log \
    sh -c "${run_cmd}"

    set +x
fi