pretrain_yi_34b_internvit_6b.sh 3.82 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/bin/bash

# Your SBATCH commands here if using SLURM.

# Please launch this script from megatron-lm root.

# Train a multimodal model.

export NCCL_IB_SL=1
export CUDA_DEVICE_MAX_CONNECTIONS=1
export TOKENIZERS_PARALLELISM="false"

DEBUG=0

if [[ $BATCH -eq 0 ]]; then
    DATETIME=`date +'%y-%m-%d-%H-%M-%S'`
    MODEL_NAME="mcore-nous-yi34b-internvit-mlp-${DATETIME}"
else
    MODEL_NAME="mcore-nous-yi34b-internvit-mlp"
fi

WORKSPACE="<some dir>"
SOURCE=`pwd`
OUTPUT_BASE="${WORKSPACE}/output"
OUTPUT="${OUTPUT_BASE}/${MODEL_NAME}"

FINETUNE_DIR=${OUTPUT}/checkpoints
LOGS_DIR="${OUTPUT}/logs"
TENSORBOARD_DIR="${OUTPUT}/tensorboard"

LOAD_NAME="combined-yi-34b-internvit-tp8-mcore"
CHECKPOINT_DIR="${WORKSPACE}/${LOAD_NAME}"

DATA_TRAIN="${SOURCE}/examples/multimodal/nvlm/pretrain_blend.yaml"


if [[ $DEBUG -eq 1 ]]; then
    MBZ=1
    BZ=1
    NW=0
    LI=1
    AD=0.0
    HD=0.0
    EXTRA_ARGS=""
    ALLOW_NONDETERMINISTIC=1
else
    MBZ=1
    BZ=2048
    NW=8
    LI=5
    AD=0.1
    HD=0.1
    EXTRA_ARGS=""
    ALLOW_NONDETERMINISTIC=1
fi

SEQ_LEN=256     # Image embeddings sequence length.
DECODER_SEQ_LEN=512     # Language model sequence length.
MAX_POS_EMBED=512


OPTIONS=" \
    --swiglu \
    --use-distributed-optimizer \
    --num-workers ${NW} \
    --num-layers 60 \
    --hidden-size 7168 \
    --normalization RMSNorm \
    --num-attention-heads 56 \
    --exit-duration-in-mins 230 \
    --group-query-attention \
    --num-query-groups 8 \
    --ffn-hidden-size 20480 \
    --seq-length ${SEQ_LEN} \
    --decoder-seq-length ${DECODER_SEQ_LEN} \
    --max-position-embeddings ${MAX_POS_EMBED} \
    --tokenizer-type MultimodalTokenizer \
    --tokenizer-model ${WORKSPACE}/<path to tokenizer> \
    --tokenizer-prompt-format nvlm-yi-34b \
    --vocab-size 64000 \
    --make-vocab-size-divisible-by 1 \
    --position-embedding-type rope \
    --rotary-percent 1.0 \
    --rotary-base 5000000 \
    --disable-bias-linear \
    --tensor-model-parallel-size 8 \
    --language-model-type yi-34b \
    --vision-model-type internvit \
    --micro-batch-size ${MBZ} \
    --global-batch-size ${BZ} \
    --train-samples 122880000 \
    --lr-decay-samples 25600000 \
    --lr-warmup-samples 83200 \
    --lr 1e-4 \
    --min-lr 2.5e-5 \
    --lr-decay-style cosine \
    --clip-grad 10.0 \
    --weight-decay 0.1 \
    --adam-beta1 0.9 \
    --adam-beta2 0.95 \
    --init-method-std 0.014 \
    --attention-dropout ${AD} \
    --hidden-dropout ${HD} \
    --eod-mask-loss \
    --bf16 \
    --tensorboard-dir=${TENSORBOARD_DIR} \
    --freeze-LM \
    --freeze-ViT \
    --img-h 448 \
    --img-w 448 \
    --patch-dim 14 \
    --data-path ${DATA_TRAIN} \
    --dataloader-type external \
    --split 100,0,0 \
    --prompt-path ${SOURCE}/examples/multimodal/nvlm/nvlm_prompts.json \
    --log-interval ${LI} \
    --save-interval 2000 \
    --eval-interval 500 \
    --eval-iters 10 \
    --log-params-norm \
    --log-num-zeros-in-grad \
    ${EXTRA_ARGS} \
    --save ${FINETUNE_DIR} \
    --load ${FINETUNE_DIR} \
    --dataloader-save ${FINETUNE_DIR}/dataloader \
    --pretrained-checkpoint ${CHECKPOINT_DIR} \
    --allow-missing-vision-projection-checkpoint \
    --disable-vision-class-token \
    --use-te \
    --use-checkpoint-args \
    --ckpt-format torch \
    --pixel-shuffle \
    --image-tag-type nvlm
    "

export NVTE_ALLOW_NONDETERMINISTIC_ALGO=${ALLOW_NONDETERMINISTIC}
export NVTE_APPLY_QK_LAYER_SCALING=0

# Interactive or batch mode
if [[ $BATCH -eq 0 ]]; then
    torchrun --nproc_per_node 8 examples/multimodal/train.py ${OPTIONS}
else
    run_cmd="python -u ${SOURCE}/examples/multimodal/train.py ${OPTIONS}"

    DATETIME=`date +'date_%y-%m-%d_time_%H-%M-%S'`

    srun -l --verbose \
    --container-image <path to docker image> \
    --container-mounts "<some mount>" \
    --output=${LOGS_DIR}/%x_%j_$DATETIME.log \
    sh -c "${run_cmd}"

    set +x
fi