pp_checkpoint_converter.py 6.94 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
import argparse
import os
import sys

import torch

# Add megatron to the path.
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir, os.path.pardir))
)


def split(input_dir, base_output_dir, input_pp, output_pp, num_tp, num_layers_per_pp_rank):
    """Split pipeline parallel size = 1 checkpoint to pipeline parallel size N."""
    for tp in range(num_tp):
        path = os.path.join(input_dir, f"mp_rank_0{tp}", "model_optim_rng.pt")
        sd = torch.load(path)

        if num_layers_per_pp_rank is None:
            num_layers = sd["args"].num_layers
            assert num_layers % output_pp == 0, "specify --num-layers-per-pp-rank for an uneven split"
            num_layers_per_pp_rank = [num_layers // output_pp] * output_pp

        layer_lb = 0
        for pp in range(output_pp):
            assert num_layers_per_pp_rank[pp] > 0, "each pp rank must have at least 1 layer"
            layer_ub = layer_lb + num_layers_per_pp_rank[pp]

            new_sd = sd.copy()
            new_sd["model"] = dict()
            for k, v in sd["model"].items():
                # First pp rank has vision model.
                if pp == 0 and ("vision_model" in k or "vision_projection" in k):
                    new_sd["model"][k] = v
                    continue

                # Only the first pp rank has the word embeddings.
                if "language_model.embedding.word_embeddings" in k and pp == 0:
                    new_sd["model"][k] = v

                # Only the last pp rank has the output layer.
                if "language_model.output_layer" in k and pp == output_pp - 1:
                    new_sd["model"][k] = v

                # Only the last pp rank has final layer norm.
                if "language_model.decoder.final_layernorm" in k and pp == output_pp - 1:
                    new_sd["model"][k] = v

                if "language_model.decoder.layers" in k:
                    layer_num = int(k.split(".")[3])

                    if layer_lb <= layer_num and layer_num < layer_ub:
                        # On all pp ranks, megatron starts layer nums from 0!
                        new_layer_num = int(layer_num - layer_lb)

                        k_splitted = k.split(".")
                        k_splitted[3] = str(new_layer_num)
                        new_k = ".".join(k_splitted)

                        new_sd["model"][new_k] = v

            output_dir = os.path.join(base_output_dir, f"iter_0000001/mp_rank_0{tp}_00{pp}")
            os.makedirs(output_dir, exist_ok=True)
            output_path = os.path.join(output_dir, "model_optim_rng.pt")
            torch.save(new_sd, output_path)

            print(f"processed tp rank: {tp}/{num_tp - 1} and pp rank: {pp}/{output_pp - 1}")

            layer_lb = layer_ub

    # This is needed for megatron checkpoint loading.
    with open(os.path.join(base_output_dir, "latest_checkpointed_iteration.txt"), "w") as f:
        f.write("1")


def combine(input_dir, base_output_dir, input_pp, output_pp, num_tp, num_layers_per_pp_rank):
    """Combine pipeline parallel size = N checkpoint to pipeline parallel size 1."""
    for tp in range(num_tp):
        new_sd = None

        layer_num_offset = 0
        max_layer_num = 0

        for pp in range(input_pp):
            path = os.path.join(input_dir, f"mp_rank_0{tp}_00{pp}", "model_optim_rng.pt")
            sd = torch.load(path)

            if pp == 0:
                new_sd = sd.copy()
                new_sd["model"] = dict()
                new_sd["args"].pipeline_model_parallel_size = 1

            assert new_sd is not None

            for k, v in sd["model"].items():
                # First pp rank has vision model.
                if pp == 0 and ("vision_model" in k or "vision_projection" in k):
                    new_sd["model"][k] = v
                    continue

                # Only the first pp rank has the word embeddings.
                if "language_model.embedding.word_embeddings" in k and pp == 0:
                    new_sd["model"][k] = v

                # Only the last pp rank has the output layer.
                if "language_model.output_layer" in k and pp == input_pp - 1:
                    new_sd["model"][k] = v

                # Only the last pp rank has final layer norm.
                if "language_model.decoder.final_layernorm" in k and pp == input_pp - 1:
                    new_sd["model"][k] = v

                if "language_model.decoder.layers" in k:
                    layer_num = int(k.split(".")[3])

                    # On all pp ranks, megatron starts layer nums from 0!
                    new_layer_num = layer_num_offset + layer_num

                    if new_layer_num > max_layer_num:
                        max_layer_num = new_layer_num

                    k_splitted = k.split(".")
                    k_splitted[3] = str(new_layer_num)
                    new_k = ".".join(k_splitted)

                    new_sd["model"][new_k] = v

            print(f"processed tp rank: {tp}/{num_tp - 1} and pp rank: {pp}/{input_pp - 1}")

            layer_num_offset = max_layer_num + 1

        output_dir = os.path.join(base_output_dir, f"iter_0000001/mp_rank_0{tp}")
        os.makedirs(output_dir, exist_ok=True)
        output_path = os.path.join(output_dir, "model_optim_rng.pt")
        torch.save(new_sd, output_path)

    # This is needed for megatron checkpoint loading.
    with open(os.path.join(base_output_dir, "latest_checkpointed_iteration.txt"), "w") as f:
        f.write("1")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Change pipeline parallelism for a model",
        formatter_class=argparse.RawDescriptionHelpFormatter,
    )

    parser.add_argument(
        "--input", type=str, required=True, help="Input model directory"
    )
    parser.add_argument(
        "--input-pipeline-parallel", type=int, required=True, help="Input model pipeline parallelism"
    )
    parser.add_argument(
        "--output", type=str, required=True, help="Output model directory"
    )
    parser.add_argument(
        "--output-pipeline-parallel", type=int, required=True, help="Output model pipeline parallelism"
    )
    parser.add_argument(
        "--tensor-parallel", type=int, required=True, help="Model tensor parallel size",
    )
    parser.add_argument(
        "--num-layers-per-pp-rank", type=int, default=None, nargs="*", help="Specify this for uneven pipeline parallel split",
    )

    args = parser.parse_args()

    f = None
    if args.input_pipeline_parallel == 1 and args.output_pipeline_parallel > 1:
        f = split
    elif args.input_pipeline_parallel > 1 and args.output_pipeline_parallel == 1:
        f = combine
    else:
        raise NotImplementedError("Only pipeline parallel 1 to N and N to 1 are supported")

    f(args.input, args.output, args.input_pipeline_parallel, args.output_pipeline_parallel, args.tensor_parallel, args.num_layers_per_pp_rank)

    print("done.")