config.py 8.33 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
from dataclasses import dataclass

import torch

from megatron.training.activations import fast_gelu, quick_gelu, squared_relu


def get_language_model_config(config):
    if config.language_model_type == "2b":
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = True
        config.layernorm_zero_centered_gamma = True
        config.bias_dropout_fusion = False
        config.rotary_percent = 0.5
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
    elif config.language_model_type == "8b":
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = False
        config.apply_query_key_layer_scaling = True
        config.layernorm_zero_centered_gamma = True
        config.bias_dropout_fusion = False
        config.rotary_percent = 0.5
        config.attention_dropout = 0.0
        config.apply_rope_fusion = False
        config.activation_func = squared_relu
        config.ffn_hidden_size = 16384
        config.masked_softmax_fusion = True
        config.attention_softmax_in_fp32 = True
        config.num_query_groups = 32
        config.kv_channels = 128
        config.rotary_interleaved = False
    elif config.language_model_type == "llama3_8b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "mistral_7b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 14336
    elif config.language_model_type == "yi-34b":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 20480
    elif config.language_model_type == "qwen2.0_72B":
        config.activation_func = torch.nn.functional.silu
        config.add_bias_linear = False
        config.add_qkv_bias = True
        config.bias_activation_fusion = False
        config.gated_linear_unit = True
        config.apply_query_key_layer_scaling = False
        config.layernorm_zero_centered_gamma = (
            False  # Zero centered gamma not supported for RMSNorm
        )
        config.bias_dropout_fusion = False
        config.apply_rope_fusion = False
        config.attention_softmax_in_fp32 = True
        config.ffn_hidden_size = 29568
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


def get_vision_model_config(config, apply_query_key_layer_scaling):
    if config.vision_model_type == "clip":
        config.num_layers = 24
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1024
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4096
        config.gated_linear_unit = False
        config.activation_func = quick_gelu
        config.kv_channels = 64
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
    elif config.vision_model_type == "siglip":
        config.num_layers = 27
        config.num_attention_heads = 16
        config.add_bias_linear = True
        config.add_qkv_bias = True
        config.hidden_size = 1152
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 4304
        config.gated_linear_unit = False
        config.activation_func = fast_gelu
        config.kv_channels = 72
        config.num_query_groups = 16
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'LayerNorm'
        config.apply_rope_fusion = False
        config.qk_layernorm = False
        config.layernorm_epsilon = 1e-6
    elif config.vision_model_type == "internvit":
        config.num_layers = 45
        config.num_attention_heads = 32     # Padded for TP=8.
        config.num_query_groups = 32    # Padded for TP=8.
        config.kv_channels = 128
        config.add_bias_linear = True
        config.add_qkv_bias = False
        config.hidden_size = 3200
        config.hidden_dropout = 0.0
        config.attention_dropout = 0.0
        config.ffn_hidden_size = 12800
        config.gated_linear_unit = False
        config.activation_func = torch.nn.functional.gelu
        config.layernorm_zero_centered_gamma = False
        config.apply_query_key_layer_scaling = apply_query_key_layer_scaling
        config.bias_activation_fusion = False
        config.bias_dropout_fusion = False
        config.attention_softmax_in_fp32 = True
        config.normalization = 'RMSNorm'
        config.layernorm_epsilon = 1e-6
        config.apply_rope_fusion = False
    else:
        raise ValueError(f"unknown vision model type {config.vision_model_type}")

    return config


def get_vision_projection_config(config, hidden_size):
    config.gated_linear_unit = False
    config.bias_activation_fusion = False
    config.add_bias_linear = False
    config.hidden_size = hidden_size  # Used as the vision projection output size, i.e., the input to the language model.
    if config.language_model_type == "2b":
        config.ffn_hidden_size = 5440
        config.activation_func = torch.nn.functional.gelu
    if config.language_model_type == "8b":
        config.ffn_hidden_size = 16384
        config.activation_func = squared_relu
    elif config.language_model_type == "llama3_8b":
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "mistral_7b":
        config.ffn_hidden_size = 14336
        config.activation_func = torch.nn.functional.gelu
        config.normalization = None
    elif config.language_model_type == "yi-34b":
        config.ffn_hidden_size = 20480
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
    elif config.language_model_type == "qwen2.0_72B":
        config.ffn_hidden_size = 29568
        config.normalization = "LayerNorm"
        config.activation_func = torch.nn.functional.gelu
    else:
        raise ValueError(f"unknown language model type {config.language_model_type}")

    return config


@dataclass
class EvaluationConfig:
    """Evaluation related configuration."""
    task: str

    temperature: float = 1.0
    top_p: float = 0.0
    top_k: int = 0

    out_seq_length: int = 32

    output_path: str = ""

    input_image_path: str = ""
    gt_path: str = ""

    num_partitions: int = 1
    partition_id: int = 0
    num_samples_per_partition: int = 0