README.md 13.4 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
### Megatron Core Inference Documentation
This guide will walk you through how you can use megatron core for inference on your models. 

### Contents
- [Megatron Core Inference Documentation](#megatron-core-inference-documentation)
- [Contents](#contents)
  - [1. Quick Start](#1-quick-start)
    - [1.1 Understanding The Code](#11-understanding-the-code)
    - [1.2 Running The Code](#12-running-the-code)
  - [2. Flow of Control In MCore Backend](#2-flow-of-control-in-mcore-backend)
  - [3. Customizing The Inference Pipeline](#3-customizing-the-inference-pipeline)
    - [3.1. Create Your Own Inference Backend](#31-create-your-own-inference-backend)
    - [3.2. Create Your Own Text Generation Controller](#32-create-your-own-text-generation-controller)
    - [3.3. Support Other Models](#33-support-other-models)
    - [3.3. Modify Inference Parameters](#33-modify-inference-parameters)
  - [4. Future work](#4-future-work)

<br>

#### 1. Quick Start
This will walk you through the flow of running batch inference on a GPT model trained using megatron core. The file can be found at [simple_gpt_batch_inference.py](./gpt/simple_gpt_batch_inference.py)

<br>

##### 1.1 Understanding The Code
***STEP 1 - We initialize model parallel and other default arguments***
We can default micro batch size to be 1, since for TP models it is not used, and for PP models it is calculated during runtime. 
```python
    initialize_megatron(
        args_defaults={'no_load_rng': True, 'no_load_optim': True, 'micro_batch_size': 1}
    )
```

***STEP 2 - We load the model using the model_provider_function***
NOTE: The model provider function in the script supports MCore and Legacy models. 

```python
    model = get_model(model_provider, wrap_with_ddp=False)
    load_checkpoint(model, None, None)
    model = model[0]
```

***STEP 3 - Choose an engine***
One of the important elements of the generate function is an inference engine. In this example we will be choosing the [megatron core engine](../../megatron/core/inference/engine/mcore_engine.py) with a [simple text generation controller](../../megatron/core/inference/text_generation_controllers/simple_text_generation_controller.py), the default engine. Other engines that will be supported in the future are TRTLLMEngine.
```python
    inference_wrapped_model = GPTInferenceWrapper(model, args)
    text_generation_controller = SimpleTextGenerationController(
        inference_wrapped_model=inference_wrapped_model, 
        tokenizer=tokenizer
    )
    inference_backend = MCoreEngine(
        text_generation_controller=text_generation_controller, max_batch_size=args.max_batch_size
    )
```

***STEP 4 - Run the generate function and display results***
We use default values for the [common inference params](../../megatron/core/inference/common_inference_params.py). Customize this if you want to change top_p, top_k, number of tokens to generate etc. 
*Note that the result is returned as a list of [InferenceRequests](../../megatron/core/inference/inference_request.py)*
```python
    results: List[InferenceRequest] = inference_engine.generate(
        prompts=args.prompts, common_inference_params=common_inference_params
    )
    
    if torch.distributed.get_rank() == 0:
        for idx, result in enumerate(results):
            print(f' ------------- RESULT FOR PROMPT {idx} --------------- ')
            result = {
                'id': result.request_id,
                'input_prompt': result.prompt, 
                'generated_text': result.generated_text,
                'generated_tokens' : result.generated_tokens
                }
            print(result)
```

<br>

##### 1.2 Running The Code
An example run script is shown below. Change the tokenizer paths, inference params, and other settings for your model. 

For a quick recap on inference params refer to [this blog](https://ivibudh.medium.com/a-guide-to-controlling-llm-model-output-exploring-top-k-top-p-and-temperature-parameters-ed6a31313910) 

```
#In a slurm cluster (You could also use docker)
ACCOUNT=<account>
MLM_PATH=/path/to/megatron-lm
GPT_CKPT=/path/to/gpt/ckpt
VOCAB_MERGE_FILE_PATH=/path/to/vocab/and/merge/file
CONTAINER_IMAGE=nvcr.io/ea-bignlp/ga-participants/nemofw-training:23.11

srun --account $ACCOUNT \
--job-name=$ACCOUNT:inference \
--partition=batch \
--time=01:00:00 \
--container-image $CONTAINER_IMAGE \
--container-mounts $MLM_PATH:/workspace/megatron-lm/,$GPT_CKPT:/workspace/mcore_gpt_ckpt,$VOCAB_MERGE_FILE_PATH:/workspace/tokenizer \
--no-container-mount-home \
--pty /bin/bash \

# Inside the container run the following. 

cd megatron-lm/
export CUDA_DEVICE_MAX_CONNECTIONS=1

TOKENIZER_ARGS=(
    --vocab-file /workspace/tokenizer/gpt2-vocab.json
    --merge-file /workspace/tokenizer/gpt2-merges.txt
    --tokenizer-type GPT2BPETokenizer
)

MODEL_ARGS=(
    --use-checkpoint-args
    --use-mcore-models
    --load /workspace/mcore_gpt_ckpt
)

INFERENCE_SPECIFIC_ARGS=(
    --attention-dropout 0.0
    --hidden-dropout 0.0
    --num-tokens-to-generate 20
    --max-batch-size 4
)

torchrun --nproc-per-node=4 examples/inference/gpt/simple_gpt_batch_inference.py \
    ${TOKENIZER_ARGS[@]} \
    ${MODEL_ARGS[@]} \
    ${INFERENCE_SPECIFIC_ARGS[@]} \
    --prompts "prompt one " "sample prompt two" "sample prompt 3"

NOTE: Other parameters which can be customized for inference are :-
--temperature (Sampling temperature)
--top_k (top_k sampling)
--top_p (top_p sampling)
--num-tokens-to-generate (Number of tokens to generate for each prompt)
--inference-batch-times-seqlen-threshold (During inference, if batch-size times sequence-length is smaller than this threshold then we will not use pipelining, otherwise we will.')
--use-dist-ckpt (If you are using dist checkpoint format for the model)
--use-legacy-models (If you are using legacy gpt model instead of mcore gpt model)

```


<br>


#### 2. Flow of Control In MCore Backend
The following is what happens in the [simple_gpt_batch_inference.py](./gpt/simple_gpt_batch_inference.py).
* We call  [mcore_engine](../../megatron/core/inference/engines/mcore_engine.py) **generate()** function with all our input prompts.
* The scheduler in the engine will add these prompts to the [active requests] pool (../../megatron/core/inference/inference_request.py) until we hit the max batch size, and then it will put the rest in the waiting requests pool. 
* The engine will then run until all requests (waiting + active) are completed 
    * The active requests are passed into  **generate_all_output_tokens_static_batch()** of the text generation controller . 
    * This function uses the [model_inference_wrappers](../../megatron/core/inference/model_inference_wrappers/abstract_model_inference_wrapper.py) **prep_model_for_inference()** , and then runs an auto regressive loop
    * In the auto regressive loop, the **get_batch_for_context_window()** method of the inference wrapper is called to get the required input, passes it into the **run_one_forward_step()** method, which calls the appropriate (PP, TP) model `.forward()` methods to get the output logits
    * The output logits are synchronized across all pipeline parallel ranks
    * The text generation controller obtains the log probabilities and samples tokens based on the strategy defined in the common inference parameters.
    * The sampled tokens are then appended to the input prompt tokens for the next iteration 
    * The **update_generation_status()** method of the text generation controller checks which prompts have finished generating or hit a stop condition
    * After the inference loop, the result is detokenized and stored as an attribute of the InferenceRequest. These requests are marked as completed. 
    * The **update_requests_pool()** method of the scheduler moves completed requests into the completed request pool and waiting requests into the active request pool

<br>

#### 3. Customizing The Inference Pipeline
The following guide will walk you through how you can customize different parts of the inference pipeline. There are three levels at which you can customize the pipeline. 
* **Inference engine** - Highest level of customization. Currently we support the MCore Engine. Change this to add a new engine.
* **Text generation controller** - Extend this to customize tokenization, detokenization, or implement a new sampling strategy.
* **Inference Wrapped Model** - Change this to support a new model.
* **Modify Inference Parameters** - Change this to update top_p, top_k, number of tokens to be generated, temperature, or other sampling parameters.

<br>

##### 3.1. Create Your Own Inference Backend 
This is the highest level of customization. The  [abstract_engine.py](./../../megatron/core/inference/engine/abstract_engine.py) file has a generate method that can be extended to support a new backend. 

```python
class AbstractEngine(ABC):
    @staticmethod
    def generate(self) -> dict:
        """The abstract backend's generate function. 

        To define your own backend, make sure you implement this and return the outputs as a dictionary . 


<br>

##### 3.2. Create Your Own Text Generation Controller
In case you want to use the megatron core backend, but would like to overwrite the tokenization, text generation or detokenization extend the [simple_text_generation_controller.py](../../megatron/core/inference/text_generation_controllers/simple_text_generation_controller.py). The class has the following methods
``` python
class SimpleTextGenerationController:

    def tokenize_prompt(self, prompt: str) -> Tuple[torch.Tensor, torch.Tensor]:
        """Utility to tokenize the input prompts"""

    def sample_from_logits(
        self,
        last_token_logits: torch.Tensor,
        common_inference_params: CommonInferenceParams,
        vocab_size: int,
    ) -> torch.Tensor:
        """Samples the logits to generate outputs

        Given the logits of the last token, this function samples it according to the parameters defined in common_inference_params and returns the samples
        """

    def update_generation_status(
        self,
        updated_prompts_tokens: torch.Tensor,
        generation_started: torch.Tensor,
        current_context_end_position: int,
        is_generation_done_tensor: torch.Tensor,
        generated_sequence_lengths: torch.Tensor,
    ) -> torch.Tensor:
        """Function to check which prompts have reached an end condition

        We check which prompts have reached an end condition and set the corresponding flags of the is_generation_done_tensor to True . The generated sequence lengths increases as we keep generating, until that prompts hits an eod condition. The generation started status tensor helps us determine which prompts have started generating
        """

    def generate_all_output_tokens_static_batch(
        self, active_requests: OrderedDict[int, InferenceRequest],
    ) -> OrderedDict[int, InferenceRequest]:
        """Utility to generate all the output tokens and probabilities for the prompts .

        This utility generates the output tokens for a static batch. It runs the forward steps till all prompts complete generation, updates the status of these requests to completed, adds the generated result and returns these requests
        """

    def detokenize_generations(self, prompt_tokens_with_generated_tokens: torch.Tensor) -> str:
        """Detokenize the output generations"""
```

<br>

##### 3.3. Support Other Models
In order to support other models please extend the [abstract_model_inference_wrapper.py](./../../megatron/core/inference/model_inference_wrappers/abstract_model_inference_wrapper.py) file. The abstract wrapper already supports the following :
* Forward method which automatically calls the appropriate forward method (PP or TP etc) depending on model parallel settings
* Initalizes the model and puts it in eval mode
* Obtains the input parameters (batch size, max seq length) and has an instance of the input 

The main methods to change for your model might be the following: 
```python
class AbstractModelInferenceWrapper:
    def prep_model_for_inference(self, prompts_tokens: torch.Tensor):
        """A utility function for preparing model for inference

        The function gets called once before the auto regressive inference loop. It puts the model in eval mode , and gets some model and inference data parameters. Extend this to build position ids ,attention mask etc, so that required slices can be extracted during the forward pass
        """

    @abc.abstractclassmethod
    def get_batch_for_context_window(self) -> List:
        """Returns the input data for inference 

        This function gets called iteratively in the inference loop . It can be used to extract relevant input from the prompt tokens, attention mask etc. required for each step in inference.
```

Refer to [gpt_inference_wrapper.py](../../megatron/core/inference/model_inference_wrappers/gpt/gpt_inference_wrapper.py) for an example of extending this for GPTModel.

<br>

##### 3.3. Modify Inference Parameters
We use  [common inference params](../../megatron/core/inference/common_inference_params.py) for text generation. Customize this if you want to change top_p, top_k, number of tokens to generate etc. If you want to add other attributes that you would use in the inference loop, you can do that as shown below

```
from megatron.core.inference.common_inference_params import CommonInferenceParams

c = CommonInferenceParams(temperature=0.5)
c.add_attributes({'min_length':4, 'eod_id':153})
```

<br>

#### 4. Future work
The following are planned for the future releases . 
* Dynamic batching 
* Paged Attention
* TRTLLM Engine support
* Support for Multimodal model inference