"src/targets/vscode:/vscode.git/clone" did not exist on "2781ccd88c7a19f775fae8743de8de712e2ad86f"
realm_model.py 14.7 KB
Newer Older
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F

5
from megatron import get_args
6
from megatron.checkpointing import load_checkpoint
7
from megatron.data.realm_index import detach, BlockData, FaissMIPSIndex
8
from megatron.model import BertModel
9
from megatron.model.utils import get_linear_layer, init_method_normal
10
11
12
from megatron.module import MegatronModule


13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class REALMAnswerSpanModel(MegatronModule):
    def __init__(self, realm_model, mlp_hidden_size=64):
        super(REALMAnswerSpanModel, self).__init__()
        self.realm_model = realm_model
        self.mlp_hidden_size = mlp_hidden_size

        args = get_args()
        init_method = init_method_normal(args.init_method_std)
        self.fc1 = get_linear_layer(2 * args.hidden_size, self.mlp_hidden_size, init_method)
        self._fc1_key = 'fc1'
        self.fc2 = get_linear_layer(self.mlp_hidden_size, 1, init_method)
        self._fc2_key = 'fc2'

        max_length = 10
        self.start_ends = []
        for length in range(max_length):
            self.start_ends.extend([(i, i + length) for i in range(288 - length)])

    def forward(self, question_tokens, question_attention_mask, answer_tokens, answer_token_lengths):
        lm_logits, block_probs, topk_block_tokens = self.realm_model(
            question_tokens, question_attention_mask, query_block_indices=None, return_topk_block_tokens=True)

        batch_span_reps, batch_loss_masks = [], []
        # go through batch one-by-one
        for i in range(len(answer_token_lengths)):
            answer_length = answer_token_lengths[i]
            answer_span_tokens = answer_tokens[i][:answer_length]
            span_reps, loss_masks = [], []
            # go through the top k for the batch item
            for logits, block_tokens in zip(lm_logits[i], topk_block_tokens[i]):
                block_logits = logits[len(logits) / 2:]
                span_starts = range(len(block_tokens) - (answer_length - 1))

                # record the start, end indices of spans which match the answer
                matching_indices = set([
                    (idx, idx + answer_length - 1) for idx in span_starts
                    if np.array_equal(block_tokens[idx:idx + answer_length], answer_span_tokens)
                ])
                # create a mask for computing the loss on P(y | z, x)
                # [num_spans]
                loss_masks.append(torch.LongTensor([int(idx_pair in matching_indices) for idx_pair in self.start_ends]))

                # get all of the candidate spans that need to be fed to MLP
                # [num_spans x 2 * embed_size]
                span_reps.append([torch.cat((block_logits[s], block_logits[e])) for (s, e) in self.start_ends])

            # data for all k blocks for a single batch item
            # [k x num_spans]
            batch_loss_masks.append(torch.stack(loss_masks))
            # [k x num_spans x 2 * embed_size]
            batch_span_reps.append(torch.stack(span_reps))

        # data for all batch items
        # [batch_size x k x num_spans]
        batch_loss_masks = torch.stack(batch_loss_masks)
        batch_span_reps = torch.stack(batch_span_reps)
        # [batch_size x k x num_spans]
        batch_span_logits = self.fc2(self.fc1(batch_span_reps)).squeeze()

        return batch_span_logits, batch_loss_masks, block_probs

        # block_probs = block_probs.unsqueeze(2).unsqueeze(3).expand_as(lm_logits)
        # lm_logits = torch.sum(lm_logits * block_probs, dim=1)


78
79
80
81
class REALMBertModel(MegatronModule):
    def __init__(self, retriever):
        super(REALMBertModel, self).__init__()
        bert_args = dict(
82
            num_tokentypes=2,
83
84
85
86
87
88
89
90
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        load_checkpoint(self.lm_model, optimizer=None, lr_scheduler=None)
        self._lm_key = 'realm_lm'

        self.retriever = retriever
91
        self.top_k = self.retriever.top_k
92
93
        self._retriever_key = 'retriever'

94
    def forward(self, tokens, attention_mask, query_block_indices, return_topk_block_tokens=False):
95
96
97
        # [batch_size x k x seq_length]
        topk_block_tokens, topk_block_attention_mask = self.retriever.retrieve_evidence_blocks(
            tokens, attention_mask, query_block_indices=query_block_indices, include_null_doc=True)
98
        batch_size = tokens.shape[0]
99
100
        # create a copy in case it needs to be returned
        ret_topk_block_tokens = np.array(topk_block_tokens)
101

102
103
104
        seq_length = topk_block_tokens.shape[2]
        topk_block_tokens = torch.cuda.LongTensor(topk_block_tokens).reshape(-1, seq_length)
        topk_block_attention_mask = torch.cuda.LongTensor(topk_block_attention_mask).reshape(-1, seq_length)
105

106
        # [batch_size x k x embed_size]
107
        true_model = self.retriever.ict_model.module.module
108
109
        fresh_block_logits = true_model.embed_block(topk_block_tokens, topk_block_attention_mask)
        fresh_block_logits = fresh_block_logits.reshape(batch_size, self.top_k, -1)
110
111
112
113

        # [batch_size x embed_size x 1]
        query_logits = true_model.embed_query(tokens, attention_mask).unsqueeze(2)

114
        # [batch_size x k]
115
116
117
        fresh_block_scores = torch.matmul(fresh_block_logits, query_logits).squeeze()
        block_probs = F.softmax(fresh_block_scores, dim=1)

118
119
120
        # [batch_size * k x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
121

122
123
124
        # [batch_size * k x 2 * seq_length]
        all_tokens = torch.cat((tokens, topk_block_tokens), axis=1)
        all_attention_mask = torch.cat((attention_mask, topk_block_attention_mask), axis=1)
125
126
        all_token_types = torch.zeros(all_tokens.shape).type(torch.int64).cuda()

127
        # [batch_size x k x 2 * seq_length x vocab_size]
128
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
129
        lm_logits = lm_logits.reshape(batch_size, self.top_k, 2 * seq_length, -1)
130
131
132
133

        if return_topk_block_tokens:
            return lm_logits, block_probs, ret_topk_block_tokens

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        state_dict_[self._retriever_key] = self.retriever.state_dict_for_save_checkpoint(destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.lm_model.load_state_dict(state_dict[self._lm_key], strict)
        self.retriever.load_state_dict(state_dict[self._retriever_key], strict)


class REALMRetriever(MegatronModule):
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
    def __init__(self, ict_model, ict_dataset, block_data, hashed_index, top_k=5):
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
        self.block_data = block_data
        self.hashed_index = hashed_index
        self.top_k = top_k
        self._ict_key = 'ict_model'

164
165
166
167
168
169
    def reload_index(self):
        args = get_args()
        self.block_data = BlockData.load_from_file(args.block_data_path)
        self.hashed_index.reset_index()
        self.hashed_index.add_block_embed_data(self.block_data)

170
    def prep_query_text_for_retrieval(self, query_text):
171
172
173
174
175
176
177
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))

178
179
180
181
182
183
184
        return query_tokens, query_pad_mask

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        query_tokens, query_pad_mask = self.prep_query_text_for_retrieval(query_text)
Neel Kant's avatar
Neel Kant committed
185
186
        topk_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
        for i, block in enumerate(topk_block_tokens[0]):
187
188
189
            block_text = self.ict_dataset.decode_tokens(block)
            print('\n    > Block {}: {}'.format(i, block_text))

190
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask, query_block_indices=None, include_null_doc=False):
191
192
        """Embed blocks to be used in a forward pass"""
        with torch.no_grad():
193
194
            if hasattr(self.ict_model, 'module'):
                true_model = self.ict_model.module
195
196
                if hasattr(true_model, 'module'):
                    true_model = true_model.module
197
198
            else:
                true_model = self.ict_model
199
200
            query_embeds = detach(true_model.embed_query(query_tokens, query_pad_mask))
        _, block_indices = self.hashed_index.search_mips_index(query_embeds, top_k=self.top_k, reconstruct=False)
201
        all_topk_tokens, all_topk_pad_masks = [], []
202
203
204
205
206

        # this will result in no candidate exclusion
        if query_block_indices is None:
            query_block_indices = [-1] * len(block_indices)

207
        top_k_offset = int(include_null_doc)
208
        for query_idx, indices in enumerate(block_indices):
209
            # [k x meta_dim]
210
211
            # exclude trivial candidate if it appears, else just trim the weakest in the top-k
            topk_metas = [self.block_data.meta_data[idx] for idx in indices if idx != query_block_indices[query_idx]]
212
            topk_block_data = [self.ict_dataset.get_block(*block_meta) for block_meta in topk_metas[:self.top_k - top_k_offset]]
213
214
215
            if include_null_doc:
                topk_block_data.append(self.ict_dataset.get_null_block())
            topk_tokens, topk_pad_masks = zip(*topk_block_data)
216

217
218
            all_topk_tokens.append(np.array(topk_tokens))
            all_topk_pad_masks.append(np.array(topk_pad_masks))
219
220

        # [batch_size x k x seq_length]
221
        return np.array(all_topk_tokens), np.array(all_topk_pad_masks)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._ict_key] = self.ict_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.ict_model.load_state_dict(state_dict[self._ict_key], strict)


class ICTBertModel(MegatronModule):
    """Bert-based module for Inverse Cloze task."""
    def __init__(self,
                 ict_head_size,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
        super(ICTBertModel, self).__init__()
        bert_args = dict(
            num_tokentypes=num_tokentypes,
            add_binary_head=False,
            ict_head_size=ict_head_size,
            parallel_output=parallel_output
        )
        assert not (only_block_model and only_query_model)
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model

        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'

        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'

    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask, only_query=False, only_block=False):
        """Run a forward pass for each of the models and compute the similarity scores."""

        if only_query:
            return self.embed_query(query_tokens, query_attention_mask)

        if only_block:
            return self.embed_block(block_tokens, block_attention_mask)

        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)

        # [batch x embed] * [embed x batch]
        retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        return retrieval_scores

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")

    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        if self.use_query_model:
            print("Loading ICT query model", flush=True)
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            print("Loading ICT block model", flush=True)
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)