cleanup_fix_dataset.py 6.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Filter and clean documents:
Capable to clean docs with less than 512 characters, less than
256 characters and contains javascript, fix text and clean text
"""

import argparse
from functools import partial
import glob
import ftfy
import json
from langdetect import detect
import multiprocessing
import os
from pathlib import Path
import re
import time

def process_doc(json_line, args):

    # Read the line.
    document = json.loads(json_line)
    text = document['text']

    output = {'remove_512': False, 'remove_256_javascript': False, \
        'remove_512_non_english': False, 'ftfy_fix_text': False, \
        'general_cleaning': False}

    try:
        # Reomove all docs with less than 512 characters
        if "remove_512" in args.tasks:
            if len(text) < 512:
                output['remove_512'] = True
                return output, text, document, True

        # Remove docs if less than 256 character length and contains Javascript
        if "remove_256_javascript" in args.tasks:
            if len(text) < 256 and 'javascript' in text.lower():
                output['remove_256_javascript'] = True
                return output, text, document, True

        # Remove docs < 512 and nonenglish
        if "remove_512_non_english" in args.tasks:
            if len(text) < 512 and detect(text) != 'en':
                output['remove_512_non_english'] = True
                return output, text, document, True

        # Fix the text using ftfy, don't remove the text, hence return False
        if "ftfy_fix_text" in args.tasks:
            fixed_text = ftfy.fix_text(text)
            output['ftfy_fix_text'] = True
            return output, fixed_text, document, False

        # Cleaning extra spaces and newlines
        if "general_cleaning" in args.tasks:
            cleaned_text = re.sub(r"  +|\b\n+ |\b\n+", " ", text)
Mostofa Patwary's avatar
Mostofa Patwary committed
72
73
74
75
76
77
78
79
80
81
82
83
            #cleaned_text = re.sub(r"\n\n+", "\n\n", text) # used this for Gutenberg dataset
            #cleaned_text = re.sub(r"\n", "\n\n", text) # Used this for realnews

            # stories datasets
            #cleaned_text = re.sub(r" \'", "'", text)
            #cleaned_text = re.sub(r" \!", "!", cleaned_text)
            #cleaned_text = re.sub(r" \.", ".", cleaned_text)
            #cleaned_text = re.sub(r" \?", "?", cleaned_text)
            #cleaned_text = re.sub(r" - ", "-", cleaned_text)
            ##cleaned_text = re.sub(r"\" ", "\"", cleaned_text)
            #cleaned_text = re.sub(r" @ ", "@", cleaned_text)

84
85
86
87
88
89
            output['general_cleaning'] = True
            return output, cleaned_text, document, False

    except Exception as e:
        print('Error: *************************\n{}\ntext: {}'.format(e, \
            text), flush=True)
Mostofa Patwary's avatar
Mostofa Patwary committed
90
        return output, text, document, True
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    # don't remove
    return output, text, document, False


def process_set(args, input_file, output_f_cleaned, output_f_filtered):

    print(' > working on {} ...'.format(input_file), flush=True)
    
    num_docs = num_remove_512 = num_remove_java = num_remove_512_non_english \
        = num_ftfy_fix_text = num_general_cleaning = 0

    # Output file and counters.
    output_cleaned = open(output_f_cleaned, 'wb')
    output_filtered = open(output_f_filtered, 'wb')

    start_time = time.time()

    # Setup multi-processing.
    num_workers = 40
    fin = open(input_file, 'r', encoding='utf-8')
    pool = multiprocessing.Pool(num_workers)
    process_doc_partial = partial(process_doc, args=args)
    processed_docs = pool.imap(process_doc_partial, fin, 500)

    # Process documents.
    for output, text, document, to_filter in processed_docs:
        num_docs += 1

        num_remove_512 += 1 if output['remove_512'] else 0
        num_remove_java += 1 if output['remove_256_javascript'] else 0
        num_remove_512_non_english += 1 if output['remove_512_non_english'] \
            else 0
        num_ftfy_fix_text += 1 if output['ftfy_fix_text'] else 0
Mostofa Patwary's avatar
Mostofa Patwary committed
125
        num_general_cleaning += 1 if output['general_cleaning'] else 0
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        document['text'] = text
        myjson = json.dumps(document, ensure_ascii=False)

        if to_filter:
            output_filtered.write(myjson.encode('utf-8'))
            output_filtered.write('\n'.encode('utf-8'))
        else:
            output_cleaned.write(myjson.encode('utf-8'))
            output_cleaned.write('\n'.encode('utf-8'))

        if num_docs % args.log_interval == 0:
            print('    processed {:9d} documents in {:.2f} seconds ...'.format(
                num_docs, time.time() - start_time), flush=True)

    # Close the file.
    output_cleaned.close()
    output_filtered.close()
    fin.close()

    # Print stats.
    print('  >> total docs: {} remove_512 {} remove_256_javascript {} '\
        'remove_512_non_english {} ftfy_fix_text {} general_cleaning {}'.\
        format(num_docs, num_remove_512, num_remove_java,\
        num_remove_512_non_english, num_ftfy_fix_text, \
        num_general_cleaning), flush=True)

if __name__ == '__main__':


    print('parsing the arguments ...')

    parser = argparse.ArgumentParser()
    parser.add_argument('--input-files', nargs = '*', required=True, default=\
                        None, help = 'Input json files that needs to be'\
                        ' creaned')
    parser.add_argument('--tasks', nargs = '*', required=True, default=None,\
                        help = 'Tasks to perform on the input files')
    parser.add_argument('--output-path', type=str, default=None,
                       help='Directory where the output should go')
    parser.add_argument('--log-interval', type=int, default=100,
                       help='Log interval')

    args = parser.parse_args()

    print('cleanup dataset ...')

    for input_file in args.input_files:
        input_filename, input_filename_ext = os.path.splitext(Path(input_file)\
            .name)

        output_f_cleaned = os.path.join(args.output_path, input_filename + \
            "_cleaned" + input_filename_ext)
        output_f_filtered = os.path.join(args.output_path, input_filename + \
            "_filtered" + input_filename_ext)

        process_set(args, input_file, output_f_cleaned, output_f_filtered)

    print('done :-)', flush=True)