pretrain_bert.py 3.75 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""Pretrain BERT"""
Raul Puri's avatar
Raul Puri committed
17
18

import torch
19
import torch.nn.functional as F
Raul Puri's avatar
Raul Puri committed
20

Mohammad's avatar
Mohammad committed
21
22
from megatron import get_args
from megatron import get_timers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
from megatron import mpu
24
from megatron import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
25
from megatron.data.bert_dataset import build_train_valid_test_datasets
Mohammad's avatar
Mohammad committed
26
27
28
29
30
from megatron.model import BertModel
from megatron.training import pretrain
from megatron.utils import reduce_losses


Mohammad's avatar
Mohammad committed
31
def model_provider():
Raul Puri's avatar
Raul Puri committed
32
33
    """Build the model."""

34
    print_rank_0('building BERT model ...')
Raul Puri's avatar
Raul Puri committed
35

36
    model = BertModel(
Mohammad's avatar
Mohammad committed
37
        num_tokentypes=2,
Mohammad's avatar
Mohammad committed
38
39
        add_binary_head=True,
        parallel_output=True)
Raul Puri's avatar
Raul Puri committed
40

41
    return model
Raul Puri's avatar
Raul Puri committed
42
43


Mohammad's avatar
Mohammad committed
44
def get_batch(data_iterator):
45
    """Build the batch."""
46

47
    # Items and their type.
48
    keys = ['text', 'types', 'labels', 'is_random', 'loss_mask', 'padding_mask']
49
50
51
52
53
54
55
56
57
58
59
60
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens = data_b['text'].long()
    types = data_b['types'].long()
61
62
63
64
    sentence_order = data_b['is_random'].long()
    loss_mask = data_b['loss_mask'].float()
    lm_labels = data_b['labels'].long()
    padding_mask = data_b['padding_mask'].long()
Raul Puri's avatar
Raul Puri committed
65

66
    return tokens, types, sentence_order, loss_mask, lm_labels, padding_mask
Raul Puri's avatar
Raul Puri committed
67
68


Mohammad's avatar
Mohammad committed
69
def forward_step(data_iterator, model):
Raul Puri's avatar
Raul Puri committed
70
    """Forward step."""
mohammad's avatar
mohammad committed
71
    args = get_args()
Mohammad's avatar
Mohammad committed
72
    timers = get_timers()
Raul Puri's avatar
Raul Puri committed
73
74

    # Get the batch.
75
    timers('batch generator').start()
76
    tokens, types, sentence_order, loss_mask, lm_labels, padding_mask \
Mohammad's avatar
Mohammad committed
77
        = get_batch(data_iterator)
78
    timers('batch generator').stop()
79

mohammad's avatar
mohammad committed
80
    # Forward model. lm_labels
mohammad's avatar
mohammad committed
81
82
83
    lm_loss_, sop_logits = model(tokens, padding_mask,
                                 tokentype_ids=types,
                                 lm_labels=lm_labels)
84

mohammad's avatar
mohammad committed
85
86
    sop_loss = F.cross_entropy(sop_logits.view(-1, 2).float(),
                               sentence_order.view(-1),
87
88
                               ignore_index=-1)

Raul Puri's avatar
Raul Puri committed
89
    lm_loss = torch.sum(
90
        lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
Raul Puri's avatar
Raul Puri committed
91

92
    loss = lm_loss + sop_loss
Raul Puri's avatar
Raul Puri committed
93

94
    reduced_losses = reduce_losses([lm_loss, sop_loss])
Raul Puri's avatar
Raul Puri committed
95

96
    return loss, {'lm loss': reduced_losses[0], 'sop loss': reduced_losses[1]}
97
98


99
100
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
101
    args = get_args()
Mohammad's avatar
Mohammad committed
102

103
104
105
106
107
108
109
110
111
112
113
114
115
    print_rank_0('> building train, validation, and test datasets '
                 'for BERT ...')
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        max_seq_length=args.seq_length,
        masked_lm_prob=args.mask_prob,
        short_seq_prob=args.short_seq_prob,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
    print_rank_0("> finished creating BERT datasets ...")
116

117
    return train_ds, valid_ds, test_ds
Raul Puri's avatar
Raul Puri committed
118
119
120


if __name__ == "__main__":
121

122
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
Mohammad's avatar
Mohammad committed
123
             args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})