realm_dataset_utils.py 7.34 KB
Newer Older
1
2
3
4
5
6
import os
import time

import numpy as np
import torch

7
from megatron import mpu, print_rank_0
8
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
Neel Kant's avatar
Neel Kant committed
9
from megatron.data.samplers import DistributedBatchSampler
10
from megatron import get_args, get_tokenizer, print_rank_0, mpu
11
12


Neel Kant's avatar
Neel Kant committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def get_one_epoch_dataloader(dataset, batch_size=None):
    """Specifically one epoch to be used in an indexing job."""
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
    if batch_size is None:
        batch_size = args.batch_size
    global_batch_size = batch_size * world_size
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    # importantly, drop_last must be False to get all the data.
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=False,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


def get_ict_batch(data_iterator):
    # Items and their type.
    keys = ['query_tokens', 'query_pad_mask',
            'block_tokens', 'block_pad_mask', 'block_data']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    query_tokens = data_b['query_tokens'].long()
    query_pad_mask = data_b['query_pad_mask'].long()
    block_tokens = data_b['block_tokens'].long()
    block_pad_mask = data_b['block_pad_mask'].long()
    block_indices = data_b['block_data'].long()

    return query_tokens, query_pad_mask,\
           block_tokens, block_pad_mask, block_indices


62
63
64
65
66
67
68
69
70
71
72
def join_str_list(str_list):
    """Join a list of strings, handling spaces appropriately"""
    result = ""
    for s in str_list:
        if s.startswith("##"):
            result += s[2:]
        else:
            result += " " + s
    return result


73
74
class BlockSampleData(object):
    """A struct for fully describing a fixed-size block of data as used in REALM
75

76
77
78
79
80
81
82
83
84
85
    :param start_idx: for first sentence of the block
    :param end_idx: for last sentence of the block (may be partially truncated in sample construction)
    :param doc_idx: the index of the document from which the block comes in the original indexed dataset
    :param block_idx: a unique integer identifier given to every block.
    """
    def __init__(self, start_idx, end_idx, doc_idx, block_idx):
        self.start_idx = start_idx
        self.end_idx = end_idx
        self.doc_idx = doc_idx
        self.block_idx = block_idx
86

87
88
    def as_array(self):
        return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64)
89

90
91
    def as_tuple(self):
        return self.start_idx, self.end_idx, self.doc_idx, self.block_idx
92
93


94
95
96
97
98
class BlockSamplesMapping(object):
    def __init__(self, mapping_array):
        # make sure that the array is compatible with BlockSampleData
        assert mapping_array.shape[1] == 4
        self.mapping_array = mapping_array
Neel Kant's avatar
Neel Kant committed
99
100
101

    def __len__(self):
        return self.mapping_array.shape[0]
102

103
    def __getitem__(self, idx):
Neel Kant's avatar
Neel Kant committed
104
        """Get the data associated with an indexed sample."""
Neel Kant's avatar
Neel Kant committed
105
        sample_data = BlockSampleData(*self.mapping_array[idx])
106
        return sample_data
107
108
109


def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs,
110
                              max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False):
111
    """Get samples mapping for a dataset over fixed size blocks. This function also requires
112
    a dataset of the titles for the source documents since their lengths must be taken into account.
113

114
115
    :return: samples_mapping (BlockSamplesMapping)
    """
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
134
135
    if use_one_sent_docs:
        indexmap_filename += '_1sentok'
136
137
138
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
139
    if mpu.get_data_parallel_rank() == 0 and \
140
141
142
143
144
145
146
147
148
149
150
151
152
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert block_dataset.doc_idx.dtype == np.int64
        assert block_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))
153
154

        # compile/bind the C++ helper code
155
156
        from megatron.data.dataset_utils import compile_helper
        compile_helper()
157

158
        from megatron.data import helpers
159
        mapping_array = helpers.build_blocks_mapping(
160
161
162
163
164
            block_dataset.doc_idx,
            block_dataset.sizes,
            title_dataset.sizes,
            num_epochs,
            max_num_samples,
165
            max_seq_length - 3,  # account for added tokens
166
            seed,
167
168
            verbose,
            use_one_sent_docs)
Neel Kant's avatar
Neel Kant committed
169

170

171
        print_rank_0(' > done building samples index mapping')
Neel Kant's avatar
Neel Kant committed
172
        np.save(indexmap_filename, mapping_array, allow_pickle=True)
173
174
175
176
177
178
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))
179

180
181
182
183
184
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
Neel Kant's avatar
Neel Kant committed
185
186
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
187
188
189
190
191

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
Neel Kant's avatar
Neel Kant committed
192

Neel Kant's avatar
Neel Kant committed
193
    mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
Neel Kant's avatar
Neel Kant committed
194
195
    samples_mapping = BlockSamplesMapping(mapping_array)

196
197
198
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
Neel Kant's avatar
Neel Kant committed
199
        mapping_array.shape[0]))
200
201

    return samples_mapping