generate_samples.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Sample Generate GPT2"""

import os
import random
20
21
import json
import copy
22
23
24
25
26
27
import numpy as np
import torch
import torch.nn.functional as F
import argparse
import time
from arguments import get_args
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron.utils import Timers
29
30
from megatron.utils import initialize_distributed
from megatron.utils import set_random_seed
31
from pretrain_gpt2 import get_masks_and_position_ids
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
32
33
from megatron.utils import load_checkpoint
from megatron.data_utils import make_tokenizer
34
from configure_data import configure_data
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
35
from megatron import mpu
36

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
37
38
39
40
from megatron.fp16 import FP16_Module
from megatron.model import GPT2Model
from megatron.model import DistributedDataParallel as DDP
from megatron.utils import print_rank_0
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

def get_model(args):
    """Build the model."""

    print_rank_0('building GPT2 model ...')
    model = GPT2Model(num_layers=args.num_layers,
                      vocab_size=args.vocab_size,
                      hidden_size=args.hidden_size,
                      num_attention_heads=args.num_attention_heads,
                      embedding_dropout_prob=args.hidden_dropout,
                      attention_dropout_prob=args.attention_dropout,
                      output_dropout_prob=args.hidden_dropout,
                      max_sequence_length=args.max_position_embeddings,
                      checkpoint_activations=args.checkpoint_activations,
                      checkpoint_num_layers=args.checkpoint_num_layers,
                      parallel_output=False)

    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training.
    model = DDP(model)

    return model

def setup_model(args):
    """Setup model and optimizer."""

    model = get_model(args)

    if args.load is not None:
        _ = load_checkpoint(
            model, None, None, args)

    return model


87
def get_batch(context_tokens, args):
88
89
    tokens = context_tokens
    tokens = tokens.view(args.batch_size, -1).contiguous()
90
    device = args.device
91
92
93
94
95
96
97
    tokens = tokens.to(device)

    # Get the masks and postition ids.
    attention_mask, loss_mask, position_ids = get_masks_and_position_ids(
        tokens,
        args.eod_token,
        args.reset_position_ids,
98
99
        args.reset_attention_mask,
        False)
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    return tokens, attention_mask, position_ids

def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    # This function has been mostly taken from huggingface conversational ai code at
    # https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313

    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
        
    if top_p > 0.0:
        #convert to 1D
114
115
        # logits=logits.view(logits.size()[1]).contiguous()
        sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
116
117
118
119
120
121
122
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
123
124
125
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
126
        #going back to 2D
127
128
        # logits=logits.view(1, -1).contiguous()
    
129
130
    return logits

131
def generate_samples_input_from_file(model, tokenizer, args):
132

133
134
135
136
    if args.sample_input_file == "":
        if mpu.get_model_parallel_rank() == 0:
            print("args.sample_input_file CAN NOT BE empty!\n")
        return
137
    
138
139
140
141
142
143
144
145
146
147
148
149

    if mpu.get_model_parallel_rank() == 0:
        fname = open(args.sample_input_file, "r")
        all_raw_text = fname.readlines()
        input_count = len(all_raw_text)
        input_pos = 0
        if args.sample_output_file == "":
            print("Argument: sample-output-file can't be empty, setting it to\n")
            print("\t args.sample_input_file.out")
            args.sample_output_file = args.sample_input_file+".out"
        fname_out = open(args.sample_output_file, "w+")

150
151
152
153
154
155
156
157
    context_count=0
    model.eval()
    with torch.no_grad():
        while True:
            torch.distributed.barrier(group=mpu.get_model_parallel_group())
            terminate_runs=0

            if mpu.get_model_parallel_rank() == 0:
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                raw_text = all_raw_text[input_pos]
                input_pos += 1
                if input_pos == input_count:
                    raw_text = "stop"

                if "stop" in raw_text:
                    terminate_runs = 1
                else:
                    context_tokens = tokenizer.EncodeAsIds(raw_text).tokenization
                    context_length = len(context_tokens)

                    if context_length >=args.seq_length//2:
                        print("\nContext length", context_length, \
                            "\nPlease give smaller context (half of the sequence length)!")
                        continue
            else:
                context_tokens = tokenizer.EncodeAsIds("EMPTY TEXT").tokenization
                context_length = len(context_tokens)
            
            terminate_runs_tensor = torch.cuda.LongTensor([terminate_runs])
            torch.distributed.broadcast(terminate_runs_tensor, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group())
            terminate_runs = terminate_runs_tensor[0].item()

            if terminate_runs == 1:
                return

            start_time = time.time()
            token_stream = get_token_stream(model, [context_tokens], tokenizer, args)
            for counter, decode_tokens in enumerate(token_stream):
                # token_end = decode_tokens.find("<|endoftext|>")
                # if token_end > 0:
                #     break
                decode_tokens, _ = decode_tokens
                decode_tokens = decode_tokens[0].cpu().numpy().tolist()

            if mpu.get_model_parallel_rank() == 0:
                os.system('clear')
                #print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
                print("\nContext:", raw_text, flush=True)
                trim_decode_tokens = tokenizer.DecodeIds(decode_tokens)[len(raw_text):]
                #print("\nMegatron-LM:", trim_decode_tokens.replace("\n", "\n\n"), flush=True)
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)

                fname_out.write("\nContext:")
                fname_out.write(raw_text)
                fname_out.write("\n\nMegatron-LM:")
                fname_out.write(trim_decode_tokens)
                #fname_out.write(trim_decode_tokens.replace("\n", "\n\n"))
                fname_out.write("\n")
 
            raw_text = None

            torch.distributed.barrier(group=mpu.get_model_parallel_group())
            context_count += 1
            
def generate_samples_interactive(model, tokenizer, args):

    print_frequency = 24 

    context_count=0
    model.eval()
    with torch.no_grad():
        while True:
            torch.distributed.barrier(group=mpu.get_model_parallel_group())
            terminate_runs=0

            if mpu.get_model_parallel_rank() == 0:
                os.system('clear')
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
                raw_text = input("\nContext prompt (stop to exit) >>> ")
                while not raw_text:
                    print('Prompt should not be empty!')
                    raw_text = input("\nContext prompt (stop to exit) >>> ")
           
                if "stop" in raw_text:
                    terminate_runs = 1
                else:
                    context_tokens = tokenizer.EncodeAsIds(raw_text).tokenization
                    context_length = len(context_tokens)

                    if context_length >=args.seq_length//2:
                        print("\nContext length", context_length, \
                            "\nPlease give smaller context (half of the sequence length)!")
                        continue
            else:
                context_tokens = tokenizer.EncodeAsIds("EMPTY TEXT").tokenization
                context_length = len(context_tokens)
            
            terminate_runs_tensor = torch.cuda.LongTensor([terminate_runs])
            torch.distributed.broadcast(terminate_runs_tensor, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group())
            terminate_runs = terminate_runs_tensor[0].item()

            if terminate_runs == 1:
                return

            start_time = time.time()
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            token_stream = get_token_stream(model, [context_tokens], tokenizer, args)
            for counter, decode_tokens in enumerate(token_stream):
                # token_end = decode_tokens.find("<|endoftext|>")
                # if token_end > 0:
                #     break
                decode_tokens, _ = decode_tokens
                decode_tokens = decode_tokens[0].cpu().numpy().tolist()

                if mpu.get_model_parallel_rank() == 0 and counter % print_frequency == 0:
                    os.system('clear')
                    #print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
                    print("\nContext:", raw_text, flush=True)
                    trim_decode_tokens = tokenizer.DecodeIds(decode_tokens)[len(raw_text):]
                    #print("\nGPT2:", trim_decode_tokens, flush=True)
                    #print("\nMegatron-LM:", trim_decode_tokens.replace("\n", "\n\n"), flush=True)
                    print("\nMegatron-LM:", trim_decode_tokens, flush=True)
269
270
271

            if mpu.get_model_parallel_rank() == 0:
                os.system('clear')
272
                #print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
273
                print("\nContext:", raw_text, flush=True)
274
275
276
277
278
                trim_decode_tokens = tokenizer.DecodeIds(decode_tokens)[len(raw_text):]
                #print("\nGPT2:", trim_decode_tokens, flush=True)
                #print("\nMegatron-LM:", trim_decode_tokens.replace("\n", "\n\n"), flush=True)
                print("\nMegatron-LM:", trim_decode_tokens, flush=True)

279
280
281
282
            raw_text = None

            torch.distributed.barrier(group=mpu.get_model_parallel_group())
            context_count += 1
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
            
            if mpu.get_model_parallel_rank() == 0:
                input("\nPress any key to continue >>>")

def generate_samples_unconditional(model, tokenizer, args):
    num_samples = args.num_samples
    context_tokens = [[tokenizer.get_command('pad').Id] for _ in range(args.batch_size)]
    samples = []
    # with open(args.genfile, 'w') as f:
    ctr = 0
    while True:
        start_time = time.time()
        for token_stream in get_token_stream(model, copy.deepcopy(context_tokens), tokenizer, args):
            pass
        # token_stream = list(get_token_stream(model, copy.deepcopy(context_tokens), tokenizer, args))
        if ctr%args.log_interval == 0:
            print('Avg s/batch:', (time.time()-start_time)/min(args.log_interval, ctr+1))
            start_time = time.time()
        length = len(token_stream)
        token_batch = token_stream[0].cpu().numpy().tolist()
        length_batch = token_stream[1].cpu().numpy().tolist()
        for tokens, length in zip(token_batch, length_batch):
            tokens = tokens[1:length-1]
            text = tokenizer.DecodeIds(tokens)
            is_finished = length < args.seq_length - 1
            datum = {'text': text, 'length': length-1, 'finished': is_finished}
            yield datum
            ctr += 1
            if ctr >= num_samples:
                break
        if ctr >= num_samples:
            break

def write_and_generate_samples_unconditional(model, tokenizer, args):
    assert args.genfile is not None
    with open(args.genfile, 'w') as f:
        for datum in generate_samples_unconditional(model, tokenizer, args):
            f.write(json.dumps(datum)+'\n')

def pad_batch(batch, tokenizer, args):
    pad_id = tokenizer.get_command('pad').Id
    context_lengths = []
    for tokens in batch:
        context_length = len(tokens)
        if context_length < args.seq_length:
            tokens.extend([pad_id]*(args.seq_length-context_length))
        context_lengths.append(context_length)
    return batch, context_lengths

def get_token_stream(model, context_tokens, tokenizer, args):
    pad_id = tokenizer.get_command('pad').Id
    # context_length = len(context_tokens)
    # if context_length < args.seq_length:
    #     context_tokens = context_tokens + [pad_id] * (args.seq_length - context_length)
    context_tokens, context_lengths = pad_batch(context_tokens, tokenizer, args)

    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    # context_length_tensor = torch.cuda.LongTensor([context_length])

    torch.distributed.broadcast(context_length_tensor, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group())
    torch.distributed.broadcast(context_tokens_tensor, mpu.get_model_parallel_src_rank(), group=mpu.get_model_parallel_group())

    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids=get_batch(context_tokens_tensor, args)

    counter = 0
    org_context_length = context_length

    layer_past = None

    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor, context_length_tensor, attention_mask, position_ids, tokenizer, args)
    for tokens, lengths in batch_token_iterator:
        context_length += 1
        yield tokens[:, :context_length], lengths


def switch(val1, val2, boolean):
    boolean = boolean.type_as(val1)
    return (1-boolean)*val1 + boolean*val2

364
def sample_sequence_batch(model, context_tokens, context_lengths, attention_mask, position_ids, tokenizer, args, maxlen=None, type_ids=None):
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
        eos_id = tokenizer.get_command('eos').Id

        counter = 0
        org_context_length = context_length

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
        if maxlen is None:
            maxlen = args.seq_length - 1
            if maxlen > (org_context_length + args.out_seq_length):
                maxlen = org_context_length + args.out_seq_length

        lengths = torch.ones([batch_size]).long().cuda()*maxlen
        
        while context_length <= (maxlen):

            if args.recompute:
387
388
                logits = model(tokens, position_ids, attention_mask, tokentype_ids=type_ids)
                logits = logits[:, context_length - 1, :]
389
            else:
390
                types2use = None
391
392
393
                if counter == 0:
                    tokens2use = tokens[:, :context_length]
                    positions2use = position_ids[:, :context_length]
394
395
                    if type_ids is not None:
                        types2use = type_ids[:, :context_length]
396
397
398
                else:
                    tokens2use = tokens[:, context_length - 1].view(batch_size, -1)
                    positions2use = position_ids[:, context_length - 1].view(batch_size, -1)
399
400
401
                    if type_ids is not None:
                        types2use = type_ids[:, context_length - 1].view(batch_size, -1)
                logits, layer_past = model(tokens2use, positions2use, attention_mask, layer_past=layer_past, get_key_value=True, tokentype_ids=types2use)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                logits = logits[:, -1].view(batch_size,-1).contiguous()

            if args.greedy:
                prev = torch.argmax(logits, dim=-1).view(-1)
            else:
                logits /= args.temperature
                logits = top_k_logits(logits, top_k=args.top_k, top_p=args.top_p)            
                log_probs = F.softmax(logits, dim=-1)
                prev = torch.multinomial(log_probs, num_samples=1).view(-1)

            print_logits = []
            for p in prev:
                print_logits.append([logits[i, p].item() for i in range(batch_size)])
            started = context_lengths <= context_length
            tokens[:, context_length] = switch(tokens[:, context_length].view(-1), prev, started)
            context_length += 1
            counter += 1

            done_token = (prev == eos_id).byte()
            just_finished = (done_token & ~is_done).bool()
            lengths[just_finished.view(-1)] = context_length
            was_done = is_done
            is_done = is_done | done_token
            done = torch.all(is_done)

            yield tokens, lengths
            if done:
                break
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

def prepare_tokenizer(args):

    tokenizer_args = {
        'tokenizer_type': args.tokenizer_type,
        'corpus': None,
        'model_path': args.tokenizer_path,
        'vocab_size': args.vocab_size,
        'model_type': args.tokenizer_model_type,
        'cache_dir': args.cache_dir}
    tokenizer = make_tokenizer(**tokenizer_args)

    args.tokenizer_num_tokens = tokenizer.num_tokens
    args.tokenizer_num_type_tokens = tokenizer.num_type_tokens
    args.eod_token = tokenizer.get_command('eos').Id

    after = tokenizer.num_tokens
447
448
449
450
451
    multiple = args.make_vocab_size_divisible_by * \
                   mpu.get_model_parallel_world_size()
    if multiple != 0:
        while (after % multiple) != 0:
            after += 1
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

    args.vocab_size = after
    print("prepare tokenizer done", flush=True)

    return tokenizer

def main():
    """Main training program."""

    print('Generate Samples')

    # Disable CuDNN.
    torch.backends.cudnn.enabled = False

    # Timer.
    timers = Timers()

    # Arguments.
    args = get_args()

    # Pytorch distributed.
    initialize_distributed(args)

    # Random seeds for reproducability.
    set_random_seed(args.seed)

    #get the tokenizer
    tokenizer = prepare_tokenizer(args)

    # Model, optimizer, and learning rate.
    model = setup_model(args)

    #setting default batch size to 1
485
486
487
    # args.batch_size = 1

    args.device = torch.cuda.current_device()
488
489

    #generate samples
490
491
492
493
494
495
496
497
    if args.num_samples == 0:
        args.batch_size = 1
        if args.sample_input_file != "":
            generate_samples_input_from_file(model, tokenizer, args)
        else:
            generate_samples_interactive(model, tokenizer, args)
    else:
        write_and_generate_samples_unconditional(model, tokenizer, args)
498
499
500
501
502
503
504
    

if __name__ == "__main__":
    main()