bert_model.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""BERT model."""

import torch

from megatron.module import MegatronModule

from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .transformer import LayerNorm
from .utils import gelu
from .utils import get_linear_layer
from .utils import init_method_normal
from .utils import scaled_init_method_normal


def bert_attention_mask_func(attention_scores, attention_mask):
    attention_scores = attention_scores + attention_mask
    return attention_scores


def bert_extended_attention_mask(attention_mask, dtype):
    # We create a 3D attention mask from a 2D tensor mask.
    # [b, 1, s]
    attention_mask_b1s = attention_mask.unsqueeze(1)
    # [b, s, 1]
    attention_mask_bs1 = attention_mask.unsqueeze(2)
    # [b, s, s]
    attention_mask_bss = attention_mask_b1s * attention_mask_bs1
    # [b, 1, s, s]
    extended_attention_mask = attention_mask_bss.unsqueeze(1)
    # Since attention_mask is 1.0 for positions we want to attend and 0.0
    # for masked positions, this operation will create a tensor which is
    # 0.0 for positions we want to attend and -10000.0 for masked positions.
    # Since we are adding it to the raw scores before the softmax, this is
    # effectively the same as removing these entirely.
    # fp16 compatibility
    extended_attention_mask = extended_attention_mask.to(dtype=dtype)
    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

    return extended_attention_mask


def bert_position_ids(token_ids):
    # Create position ids
    seq_length = token_ids.size(1)
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=token_ids.device)
    position_ids = position_ids.unsqueeze(0).expand_as(token_ids)

    return position_ids



class BertLMHead(MegatronModule):
    """Masked LM head for Bert

    Arguments:
        mpu_vocab_size: model parallel size of vocabulary.
        hidden_size: hidden size
        init_method: init method for weight initialization
        layernorm_epsilon: tolerance for layer norm divisions
77
        parallel_output: whether output logits being distributed or not.
78
79
80
81
82
83
84
85
    """
    def __init__(self, mpu_vocab_size, hidden_size, init_method,
                 layernorm_epsilon, parallel_output):

        super(BertLMHead, self).__init__()

        self.bias = torch.nn.Parameter(torch.zeros(mpu_vocab_size))
        self.bias.model_parallel = True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
86
87
        self.bias.partition_dim = 0
        self.bias.stride = 1
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        self.parallel_output = parallel_output

        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)
        self.layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)


    def forward(self, hidden_states, word_embeddings_weight):
        hidden_states = self.dense(hidden_states)
        hidden_states = gelu(hidden_states)
        hidden_states = self.layernorm(hidden_states)
        output = parallel_lm_logits(hidden_states,
                                    word_embeddings_weight,
                                    self.parallel_output,
                                    bias=self.bias)
        return output



class BertModel(MegatronModule):
    """Bert Language model."""

    def __init__(self,
                 num_layers,
                 vocab_size,
                 hidden_size,
                 num_attention_heads,
                 embedding_dropout_prob,
                 attention_dropout_prob,
                 output_dropout_prob,
                 max_sequence_length,
                 checkpoint_activations,
                 checkpoint_num_layers=1,
                 add_binary_head=False,
121
                 ict_head_size=None,
122
123
124
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 num_tokentypes=0,
125
126
127
                 parallel_output=True,
                 apply_query_key_layer_scaling=False,
                 attention_softmax_in_fp32=False):
128
129
130
131

        super(BertModel, self).__init__()

        self.add_binary_head = add_binary_head
132
133
134
135
        self.ict_head_size = ict_head_size
        self.add_ict_head = ict_head_size is not None
        assert not (self.add_binary_head and self.add_ict_head)

136
137
        self.parallel_output = parallel_output
        init_method = init_method_normal(init_method_std)
138
        add_pooler = self.add_binary_head or self.add_ict_head
139
140
141
142
143
144
145
146
147
148
149

        self.language_model, self._language_model_key = get_language_model(
            num_layers=num_layers,
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            embedding_dropout_prob=embedding_dropout_prob,
            attention_dropout_prob=attention_dropout_prob,
            output_dropout_prob=output_dropout_prob,
            max_sequence_length=max_sequence_length,
            num_tokentypes=num_tokentypes,
150
            add_pooler=add_pooler,
151
152
153
154
155
156
157
            attention_mask_func=bert_attention_mask_func,
            checkpoint_activations=checkpoint_activations,
            checkpoint_num_layers=checkpoint_num_layers,
            layernorm_epsilon=layernorm_epsilon,
            init_method=init_method,
            scaled_init_method=scaled_init_method_normal(init_method_std,
                                                         num_layers),
158
159
160
            residual_connection_post_layernorm=False,
            apply_query_key_layer_scaling=apply_query_key_layer_scaling,
            attention_softmax_in_fp32=attention_softmax_in_fp32)
161

Neel Kant's avatar
Neel Kant committed
162
163
164
165
166
        if not self.add_ict_head:
            self.lm_head = BertLMHead(
                self.language_model.embedding.word_embeddings.weight.size(0),
                hidden_size, init_method, layernorm_epsilon, parallel_output)
            self._lm_head_key = 'lm_head'
167
168
169
170

        if self.add_binary_head:
            self.binary_head = get_linear_layer(hidden_size, 2, init_method)
            self._binary_head_key = 'binary_head'
171
172
173
        elif self.add_ict_head:
            self.ict_head = get_linear_layer(hidden_size, ict_head_size, init_method)
            self._ict_head_key = 'ict_head'
174
175
176
177
178
179
180
181

    def forward(self, input_ids, attention_mask,
                tokentype_ids=None):

        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

182
        if self.add_binary_head or self.add_ict_head:
183
184
185
186
187
188
189
190
191
192
193
194
195
            lm_output, pooled_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)
        else:
            lm_output = self.language_model(
                input_ids,
                position_ids,
                extended_attention_mask,
                tokentype_ids=tokentype_ids)

        # Output.
Neel Kant's avatar
Neel Kant committed
196
197
198
199
        if self.add_ict_head:
            ict_logits = self.ict_head(pooled_output)
            return ict_logits, None

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        lm_logits = self.lm_head(
            lm_output, self.language_model.embedding.word_embeddings.weight)
        if self.add_binary_head:
            binary_logits = self.binary_head(pooled_output)
            return lm_logits, binary_logits

        return lm_logits, None


    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)
218
219
220
221
        if not self.add_ict_head:
            state_dict_[self._lm_head_key] \
                = self.lm_head.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
222
223
224
        if self.add_binary_head:
            state_dict_[self._binary_head_key] \
                = self.binary_head.state_dict(destination, prefix, keep_vars)
225
226
227
        elif self.add_ict_head:
            state_dict_[self._ict_head_key] \
                = self.ict_head.state_dict(destination, prefix, keep_vars)
228
229
230
231
232
233
234
235
        return state_dict_


    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
236
237
238
        if not self.add_ict_head:
            self.lm_head.load_state_dict(
                state_dict[self._lm_head_key], strict=strict)
239
        if self.add_binary_head:
Neel Kant's avatar
Neel Kant committed
240
241
            self.binary_head.load_state_dict(
                state_dict[self._binary_head_key], strict=strict)
242
        elif self.add_ict_head:
Neel Kant's avatar
Neel Kant committed
243
244
            self.ict_head.load_state_dict(
                state_dict[self._ict_head_key], strict=strict)
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

class ICTBertModel(MegatronModule):
    def __init__(self,
                 num_layers,
                 vocab_size,
                 hidden_size,
                 num_attention_heads,
                 embedding_dropout_prob,
                 attention_dropout_prob,
                 output_dropout_prob,
                 max_sequence_length,
                 checkpoint_activations,
                 ict_head_size,
                 checkpoint_num_layers=1,
                 layernorm_epsilon=1.0e-5,
                 init_method_std=0.02,
                 num_tokentypes=0,
                 parallel_output=True,
                 apply_query_key_layer_scaling=False,
                 attention_softmax_in_fp32=False):

        super(ICTBertModel, self).__init__()
        bert_args = dict(
            num_layers=num_layers,
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            embedding_dropout_prob=embedding_dropout_prob,
            attention_dropout_prob=attention_dropout_prob,
            output_dropout_prob=output_dropout_prob,
            max_sequence_length=max_sequence_length,
            checkpoint_activations=checkpoint_activations,
            add_binary_head=False,
            ict_head_size=ict_head_size,
            checkpoint_num_layers=checkpoint_num_layers,
            layernorm_epsilon=layernorm_epsilon,
            init_method_std=init_method_std,
            num_tokentypes=num_tokentypes,
            parallel_output=parallel_output,
            apply_query_key_layer_scaling=apply_query_key_layer_scaling,
            attention_softmax_in_fp32=attention_softmax_in_fp32)

        self.question_model = BertModel(**bert_args)
289
290
291
292
293
294
295
        self._question_key = 'question_model'
        self.context_model = BertModel(**bert_args)
        self._context_key = 'context_model'

    def forward(self, input_tokens, input_attention_mask, input_types,
                context_tokens, context_attention_mask, context_types):

296
297
        question_ict_logits, _ = self.question_model.forward(input_tokens, 1 - input_attention_mask, input_types)
        context_ict_logits, _ = self.context_model.forward(context_tokens, 1 - context_attention_mask, context_types)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

        # [batch x h] * [h x batch]
        retrieval_scores = question_ict_logits.matmul(torch.transpose(context_ict_logits, 0, 1))

        return retrieval_scores

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        state_dict_ = {}
        state_dict_[self._question_key] \
            = self.question_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
        state_dict_[self._context_key] \
            = self.context_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        self.question_model.load_state_dict(
            state_dict[self._question_key], strict=strict)
        self.context_model.load_state_dict(
            state_dict[self._context_key], strict=strict)