ensemble_classifier.py 5.47 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
2
3
4
import os
import argparse
import collections

Raul Puri's avatar
Raul Puri committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import torch

def process_files(args):
    all_predictions = collections.OrderedDict()
    all_labels = collections.OrderedDict()
    all_uid = collections.OrderedDict()
    for path in args.paths:
        path = os.path.join(path, args.prediction_name)
        try:
            data = torch.load(path)
            for dataset in data:
                name, d = dataset
                predictions, labels, uid = d
                if name not in all_predictions:
                    all_predictions[name] = np.array(predictions)
                    if args.labels is None:
                        args.labels = [i for i in range(all_predictions[name].shape[1])]
                    if args.eval:
                        all_labels[name] = np.array(labels)
                    all_uid[name] = np.array(uid)
                else:
                    all_predictions[name] += np.array(predictions)
                    assert np.allclose(all_uid[name], np.array(uid))
        except Exception as e:
            print(e)
            continue
    return all_predictions, all_labels, all_uid


def get_threshold(all_predictions, all_labels, one_threshold=False):
    if one_threshold:
Raul Puri's avatar
Raul Puri committed
37
38
39
40
41
42
43
44
        all_predictons = {'combined': np.concatenate(list(all_predictions.values()))}
        all_labels = {'combined': np.concatenate(list(all_predictions.labels()))}
    out_thresh = []
    for dataset in all_predictions:
        preds = all_predictions[dataset]
        labels = all_labels[dataset]
        out_thresh.append(calc_threshold(preds,labels))
    return out_thresh
Raul Puri's avatar
Raul Puri committed
45
46


Raul Puri's avatar
Raul Puri committed
47
48
49
50
51
52
53
54
55
56
57
def calc_threshold(p, l):
    trials = [(i)*(1./100.) for i in range(100)]
    best_acc = float('-inf')
    best_thresh = 0
    for t in trials:
        acc = ((apply_threshold(p, t).argmax(-1) == l).astype(float)).mean()
        if acc > best_acc:
            best_acc = acc
            best_thresh = t
    return best_thresh

Raul Puri's avatar
Raul Puri committed
58

Raul Puri's avatar
Raul Puri committed
59
60
61
62
63
64
65
66
def apply_threshold(preds, t):
    assert (np.allclose(preds.sum(-1), np.ones(preds.shape[0])))
    prob = preds[:,-1]
    thresholded = (prob >= t).astype(int)
    preds = np.zeros_like(preds)
    preds[np.arange(len(thresholded)), thresholded.reshape(-1)] = 1
    return preds

Raul Puri's avatar
Raul Puri committed
67

Raul Puri's avatar
Raul Puri committed
68
69
70
71
72
73
74
75
76
77
def threshold_predictions(all_predictions, threshold):
    if len(threshold)!=len(all_predictions):
        threshold = [threshold[-1]]*(len(all_predictions)-len(threshold))
    for i, dataset in enumerate(all_predictions):
        thresh = threshold[i]
        preds = all_predictions[dataset]
        all_predictions[dataset] = apply_threshold(preds, thresh)
    return all_predictions


Raul Puri's avatar
Raul Puri committed
78
79
80
def postprocess_predictions(all_predictions, all_labels, args):
    for d in all_predictions:
        all_predictions[d] = all_predictions[d]/len(args.paths)
Raul Puri's avatar
Raul Puri committed
81

Raul Puri's avatar
Raul Puri committed
82
83
84
    if args.calc_threshold:
        args.threshold = get_threshold(all_predictions, all_labels, args.one_threshold)
        print('threshold', args.threshold)
Raul Puri's avatar
Raul Puri committed
85

Raul Puri's avatar
Raul Puri committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    if args.threshold is not None:
        all_predictions = threshold_predictions(all_predictions, args.threshold)

    return all_predictions, all_labels


def write_predictions(all_predictions, all_labels, all_uid, args):
    all_correct = 0
    count = 0
    for dataset in all_predictions:
        preds = all_predictions[dataset]
        preds = np.argmax(preds, -1)
        if args.eval:
            correct = (preds == all_labels[dataset]).sum()
            num = len(all_labels[dataset])
            accuracy = correct/num
            count += num
            all_correct += correct
            accuracy = (preds == all_labels[dataset]).mean()
            print(accuracy)
        if not os.path.exists(os.path.join(args.outdir, dataset)):
            os.makedirs(os.path.join(args.outdir, dataset))
        outpath = os.path.join(args.outdir, dataset, os.path.splitext(args.prediction_name)[0]+'.tsv')
        with open(outpath, 'w') as f:
            f.write('id\tlabel\n')
            f.write('\n'.join(str(uid)+'\t'+str(args.labels[p]) for uid, p in zip(all_uid[dataset], preds.tolist())))
Raul Puri's avatar
Raul Puri committed
112
    if args.eval:
Raul Puri's avatar
Raul Puri committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        print(all_correct/count)


def ensemble_predictions(args):
    all_predictions, all_labels, all_uid = process_files(args)
    all_predictions, all_labels = postprocess_predictions(all_predictions, all_labels, args)
    write_predictions(all_predictions, all_labels, all_uid, args)


def  main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--paths', required=True, nargs='+',
                        help='paths to checkpoint directories used in ensemble')
    parser.add_argument('--eval', action='store_true',
                        help='compute accuracy metrics against labels (dev set)')
    parser.add_argument('--outdir',
                        help='directory to place ensembled predictions in')
    parser.add_argument('--prediction-name', default='test_predictions.pt',
                        help='name of predictions in checkpoint directories')
    parser.add_argument('--calc-threshold', action='store_true',
                        help='calculate threshold classification')
    parser.add_argument('--one-threshold', action='store_true',
                        help='use on threshold for all subdatasets')
    parser.add_argument('--threshold', nargs='+', default=None, type=float,
                        help='user supplied threshold for classification')
    parser.add_argument('--labels',nargs='+', default=None,
                        help='whitespace separated list of label names')
    args = parser.parse_args()
    ensemble_predictions(args)


if __name__ == '__main__':
    main()