llama2_7b.sh 3.03 KB
Newer Older
liangjing's avatar
update  
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/bin/bash

# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=SYS

export NCCL_ALGO=Ring
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1

export NCCL_NET_GDR_LEVEL=SYS
export NCCL_NET_GDR_READ=0

lrank=$OMPI_COMM_WORLD_LOCAL_RANK
RANK=$OMPI_COMM_WORLD_RANK
WORLD_SIZE=$OMPI_COMM_WORLD_SIZE

CHECKPOINT_PATH=./tmp #$1 #<Specify path>
TENSORBOARD_LOGS_PATH=./tmp  #$2 #<Specify path>
DATA_PATH="/path_to_dataset/my-llama_text_document" #<Specify path and file prefix>_text_document
TOKENIZER_PATH="/path_to_tokenizer.model"

GPT_MODEL_ARGS=(
    --num-layers 32 
    --hidden-size 4096
    --num-attention-heads 32
    --ffn-hidden-size 11008
    --seq-length 4096 
    --max-position-embeddings 4096
)

TRAINING_ARGS=(
    --log-throughput
    --transformer-impl local
    --use-legacy-models 
    --micro-batch-size 1 
    --global-batch-size 240 
    --train-iters 100 
    --weight-decay 0.1 
    --adam-beta1 0.9 
    --adam-beta2 0.95 
    --init-method-std 0.006 
    --clip-grad 1.0 
    --bf16
    --use-distributed-optimizer 
    --use-flash-attn
    --disable-bias-linear
    --attention-dropout 0
    --hidden-dropout 0
    --no-gradient-accumulation-fusion
    --swiglu
    --lr 3.0e-5 
    --lr-decay-style cosine 
    --min-lr 3.0e-6
    --lr-warmup-iters 1
)
MODEL_PARALLEL_ARGS=(
        --sequence-parallel
	--tensor-model-parallel-size 1 
	--pipeline-model-parallel-size 2 
)

DATA_ARGS=(
    --data-path $DATA_PATH 
    --split 949,50,1
    --untie-embeddings-and-output-weights
    --use-rotary-position-embeddings 
    --normalization RMSNorm 
    --no-position-embedding 
    --tokenizer-model $TOKENIZER_PATH 
    --tokenizer-type Llama2Tokenizer
)

EVAL_AND_LOGGING_ARGS=(
    --log-interval 1
    --save-interval 10000 
    --eval-interval 1000 
    --save $CHECKPOINT_PATH 
    --load $CHECKPOINT_PATH 
    --eval-iters 10
    --tensorboard-dir $TENSORBOARD_LOGS_PATH 
)

APP="python3  -u pretrain_gpt.py \
     ${GPT_MODEL_ARGS[@]} \
     ${TRAINING_ARGS[@]} \
     ${MODEL_PARALLEL_ARGS[@]} \
     ${DATA_ARGS[@]} \
     ${EVAL_AND_LOGGING_ARGS[@]}
     --rank ${RANK} \
     --world_size ${WORLD_SIZE} \
     --dist_url tcp://${1}:34566 \
    "

#for intel cpu
case ${lrank} in
[0])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[1])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[2])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[3])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=0 --membind=0 ${APP}
  ;;
[4])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
[5])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
[6])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
[7])
  export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
  numactl --cpunodebind=1 --membind=1 ${APP}
  ;;
esac