layer_norm_cuda.cpp 7.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/* coding=utf-8
 * Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*This code is copied fron NVIDIA apex:
 *     https://github.com/NVIDIA/apex
 *     with minor changes. */

#include <torch/extension.h>
#include <vector>
#include <cassert>
#include "compat.h"

namespace {
void compute_n1_n2(
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    int& n1,
    int& n2)
{
    int idiff = input.ndimension() - normalized_shape.size();
    n2 = 1;
    for (int i = 0;  i < (int)normalized_shape.size();  ++i) {
	    assert( input.sizes()[i+idiff] == normalized_shape[i] );
	    n2 *= normalized_shape[i];
    }
    n1 = 1;
    for (int i = 0;  i < idiff;  ++i) {
	    n1 *= input.sizes()[i];
    }
}

void check_args(
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor gamma,
    at::Tensor beta
    )
{
    TORCH_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape));
    TORCH_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape));
}

void check_args(
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    int& n1,
    int& n2
    )
{
    int64_t normalized_ndim = normalized_shape.size();

    if (normalized_ndim < 1) {
      std::stringstream ss;
      ss << "Expected normalized_shape to be at least 1-dimensional, i.e., "
         << "containing at least one element, but got normalized_shape="
         << normalized_shape;
      throw std::runtime_error(ss.str());
    }

    auto input_shape = input.sizes();
    auto input_ndim = input.dim();

    if (input_ndim < normalized_ndim ||
        !input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) {
      std::stringstream ss;
      ss << "Given normalized_shape=" << normalized_shape
         << ", expected input with shape [*";
      for (auto size : normalized_shape) {
        ss << ", " << size;
      }
      ss << "], but got input of size" << input_shape;
      throw std::runtime_error(ss.str());
    }

    compute_n1_n2(input,normalized_shape,n1,n2);
}


void check_args(
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor gamma,
    at::Tensor beta,
    int& n1,
    int& n2
    )
{
    check_args(input,normalized_shape,n1,n2);
    check_args(normalized_shape,gamma,beta);
}
}

void cuda_layer_norm(
    at::Tensor* output,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon);

#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

std::vector<at::Tensor> layer_norm(
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    double epsilon) {
  CHECK_INPUT(input);
  int n1,n2;
  check_args(input,normalized_shape,n1,n2);
  at::Tensor output = at::empty_like(input);
  at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
  at::Tensor invvar = at::empty_like(mean);
  cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
      normalized_shape,NULL,NULL,epsilon);
  return {output, mean, invvar};
}
std::vector<at::Tensor> layer_norm_affine(
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor gamma,
    at::Tensor beta,
    double epsilon) {
  CHECK_INPUT(input);
  CHECK_INPUT(gamma);
  CHECK_INPUT(beta);
  int n1,n2;
  check_args(input,normalized_shape,gamma,beta,n1,n2);
  at::Tensor output = at::empty_like(input, input.options().dtype(at::ScalarType::Half));
  at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
  at::Tensor invvar = at::empty_like(mean);
  cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
      normalized_shape,&gamma,&beta,epsilon);
  return {output, mean, invvar};
}

void cuda_layer_norm_gradient(
    at::Tensor* dout,
    at::Tensor* mean,
    at::Tensor* invvar,
    at::Tensor* input,
    int n1,
    int n2,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor* gamma,
    at::Tensor* beta,
    double epsilon,
    at::Tensor* grad_input,
    at::Tensor* grad_gamma,
    at::Tensor* grad_beta
    );

at::Tensor layer_norm_gradient(
    at::Tensor dout,
    at::Tensor mean,
    at::Tensor invvar,
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    double epsilon) {
  CHECK_INPUT(dout);
  CHECK_INPUT(mean);
  CHECK_INPUT(invvar);
  CHECK_INPUT(input);
  int n1,n2;
  check_args(input,normalized_shape,n1,n2);
  at::Tensor grad_input = at::empty_like(input);
  cuda_layer_norm_gradient(&dout,&mean,&invvar,&input,n1,n2,
      normalized_shape,NULL,NULL,epsilon,
      &grad_input,NULL,NULL);
  return grad_input;
}
std::vector<at::Tensor> layer_norm_gradient_affine(
    at::Tensor dout,
    at::Tensor mean,
    at::Tensor invvar,
    at::Tensor input,
    #ifdef VERSION_GE_1_1
    at::IntArrayRef normalized_shape,
    #else
    at::IntList normalized_shape,
    #endif
    at::Tensor gamma,
    at::Tensor beta,
    double epsilon) {
  CHECK_INPUT(dout);
  CHECK_INPUT(mean);
  CHECK_INPUT(invvar);
  CHECK_INPUT(input);
  CHECK_INPUT(gamma);
  CHECK_INPUT(beta);
  int n1,n2;
  check_args(input,normalized_shape,gamma,beta,n1,n2);
  at::Tensor grad_input = at::empty_like(input);
  at::Tensor grad_gamma = at::empty_like(gamma);
  at::Tensor grad_beta = at::empty_like(beta);
  cuda_layer_norm_gradient(&dout,&mean,&invvar,&input,n1,n2,
      normalized_shape,&gamma,&beta,epsilon,
      &grad_input,&grad_gamma,&grad_beta);
  return {grad_input, grad_gamma, grad_beta};
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("forward_affine", &layer_norm_affine, "LayerNorm forward (CUDA)");
  m.def("forward", &layer_norm, "LayerNorm forward (CUDA)");
  m.def("backward_affine", &layer_norm_gradient_affine, "LayerNorm backward (CUDA)");
  m.def("backward", &layer_norm_gradient, "LayerNorm backward (CUDA)");
}