bert_dataset.py 11.3 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
"""BERT Style dataset."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
17

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
18
import os
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
19
20
21
22
23
24
import time

import numpy as np
import torch
from torch.utils.data import Dataset

25
from megatron import get_tokenizer
26
from megatron import mpu
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.data.dataset_utils import build_training_sample
28
from megatron.data.indexed_dataset import make_dataset as make_indexed_dataset
29
from megatron import print_rank_0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
30

31

32
33
def build_train_valid_test_datasets(data_prefix, data_impl, splits_string,
                                    train_valid_test_num_samples,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                                    max_seq_length, masked_lm_prob,
                                    short_seq_prob, seed, skip_warmup):

    # Indexed dataset.
    indexed_dataset = get_indexed_dataset_(data_prefix,
                                           data_impl,
                                           skip_warmup)

    # Get start and end indices of train/valid/train into doc-idx
    # Note that doc-idx is desinged to be num-docs + 1 so we can
    # easily iterate over it.
    total_num_of_documents = indexed_dataset.doc_idx.shape[0] - 1
    splits = get_train_valid_test_split_(splits_string, total_num_of_documents)

    # Print stats about the splits.
    print_rank_0(' > dataset split:')
    def print_split_stats(name, index):
        print_rank_0('    {}:'.format(name))
        print_rank_0('     document indices in [{}, {}) total of {} '
                     'documents'.format(splits[index], splits[index + 1],
                                        splits[index + 1] - splits[index]))
        start_index = indexed_dataset.doc_idx[splits[index]]
        end_index = indexed_dataset.doc_idx[splits[index + 1]]
        print_rank_0('     sentence indices in [{}, {}) total of {} '
                     'sentences'.format(start_index, end_index,
                                        end_index - start_index))
    print_split_stats('train', 0)
    print_split_stats('validation', 1)
    print_split_stats('test', 2)

    def build_dataset(index, name):
        dataset = None
        if splits[index + 1] > splits[index]:
            # Get the pointer to the original doc-idx so we can set it later.
            doc_idx_ptr = indexed_dataset.get_doc_idx()
            # Slice the doc-idx
            start_index = splits[index]
            # Add +1 so we can index into the dataset to get the upper bound.
            end_index = splits[index + 1] + 1
            # New doc_idx view.
            indexed_dataset.set_doc_idx(doc_idx_ptr[start_index:end_index])
            # Build the dataset accordingly.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
            dataset = BertDataset(
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
                name=name,
                indexed_dataset=indexed_dataset,
                data_prefix=data_prefix,
                num_epochs=None,
                max_num_samples=train_valid_test_num_samples[index],
                masked_lm_prob=masked_lm_prob,
                max_seq_length=max_seq_length,
                short_seq_prob=short_seq_prob,
                seed=seed)
            # Set the original pointer so dataset remains the main dataset.
            indexed_dataset.set_doc_idx(doc_idx_ptr)
            # Checks.
            assert indexed_dataset.doc_idx[0] == 0
            assert indexed_dataset.doc_idx.shape[0] == \
                (total_num_of_documents + 1)
        return dataset

    train_dataset = build_dataset(0, 'train')
    valid_dataset = build_dataset(1, 'valid')
    test_dataset = build_dataset(2, 'test')

    return (train_dataset, valid_dataset, test_dataset)


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
101
class BertDataset(Dataset):
102

103
    def __init__(self, name, indexed_dataset, data_prefix,
104
105
                 num_epochs, max_num_samples, masked_lm_prob,
                 max_seq_length, short_seq_prob, seed):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
106
107

        # Params to store.
108
        self.name = name
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
109
110
111
112
        self.seed = seed
        self.masked_lm_prob = masked_lm_prob
        self.max_seq_length = max_seq_length

113
        # Dataset.
114
115
        self.indexed_dataset = indexed_dataset

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
116
117

        # Build the samples mapping.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118
119
120
121
122
123
        self.samples_mapping = get_samples_mapping_(self.indexed_dataset,
                                                    data_prefix,
                                                    num_epochs,
                                                    max_num_samples,
                                                    self.max_seq_length,
                                                    short_seq_prob,
124
125
                                                    self.seed,
                                                    self.name)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
127

        # Vocab stuff.
128
129
130
131
132
133
134
        tokenizer = get_tokenizer()
        self.vocab_id_list = list(tokenizer.inv_vocab.keys())
        self.vocab_id_to_token_dict = tokenizer.inv_vocab
        self.cls_id = tokenizer.cls
        self.sep_id = tokenizer.sep
        self.mask_id = tokenizer.mask
        self.pad_id = tokenizer.pad
135

136

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
137
    def __len__(self):
138
        return self.samples_mapping.shape[0]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
139

140

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
    def __getitem__(self, idx):
142

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143
144
145
146
        start_index, end_index, seq_length = self.samples_mapping[idx]
        sample = []
        for index in range(start_index, end_index):
            sample.append(self.indexed_dataset[index])
147
148
149
        # Note that this rng state should be numpy and not python since
        # python randint is inclusive whereas the numpy one is exclusive.
        np_rng = np.random.RandomState(seed=(self.seed + idx))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
        return build_training_sample(sample, seq_length,
151
                                     self.max_seq_length, # needed for padding
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
152
153
154
155
                                     self.vocab_id_list,
                                     self.vocab_id_to_token_dict,
                                     self.cls_id, self.sep_id,
                                     self.mask_id, self.pad_id,
156
                                     self.masked_lm_prob, np_rng)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
157

158

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159
def get_indexed_dataset_(data_prefix, data_impl, skip_warmup):
160
161
162

    print_rank_0(' > building dataset index ...')

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163
164
165
166
    start_time = time.time()
    indexed_dataset = make_indexed_dataset(data_prefix,
                                           data_impl,
                                           skip_warmup)
167
168
169
170
171
172
173
174
175
176
    assert indexed_dataset.sizes.shape[0] == indexed_dataset.doc_idx[-1]
    print_rank_0(' > finished creating indexed dataset in {:4f} '
                 'seconds'.format(time.time() - start_time))

    print_rank_0(' > indexed dataset stats:')
    print_rank_0('    number of documents: {}'.format(
        indexed_dataset.doc_idx.shape[0] - 1))
    print_rank_0('    number of sentences: {}'.format(
        indexed_dataset.sizes.shape[0]))

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177
178
179
    return indexed_dataset


180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def get_train_valid_test_split_(splits_string, size):
    """ Get dataset splits from comma or '/' separated string list."""

    splits = []
    if splits_string.find(',') != -1:
        splits = [float(s) for s in splits_string.split(',')]
    elif splits_string.find('/') != -1:
        splits = [float(s) for s in splits_string.split('/')]
    else:
        splits = [float(splits_string)]
    while len(splits) < 3:
        splits.append(0.)
    splits = splits[:3]
    splits_sum = sum(splits)
    assert splits_sum > 0.0
    splits = [split/splits_sum for split in splits]
    splits_index = [0]
    for index, split in enumerate(splits):
        splits_index.append(splits_index[index] +
                            int(round(split * float(size))))
    diff = splits_index[-1] - size
    for index in range(1, len(splits_index)):
        splits_index[index] -= diff
    assert len(splits_index) == 4
    assert splits_index[-1] == size
    return splits_index


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
208
209
210
211
212
213
def get_samples_mapping_(indexed_dataset,
                         data_prefix,
                         num_epochs,
                         max_num_samples,
                         max_seq_length,
                         short_seq_prob,
214
215
                         seed,
                         name):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
    if not num_epochs:
217
        if not max_num_samples:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
218
219
220
221
222
223
224
225
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
226
227
228
229
230
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
231
232
233
234
235
236
237
238
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{:0.2f}ssp'.format(short_seq_prob)
    indexmap_filename += '_{}s'.format(seed)
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
    if torch.distributed.get_rank() == 0 and \
       not os.path.isfile(indexmap_filename):
239
        print(' > WARNING: could not find index map file {}, building '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
240
              'the indices on rank 0 ...'.format(indexmap_filename))
241

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
242
243
244
245
246
247
        # Make sure the types match the helpers input types.
        assert indexed_dataset.doc_idx.dtype == np.int64
        assert indexed_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
248
        start_time = time.time()
249
250
        print_rank_0(' > building sapmles index mapping for {} ...'.format(
            name))
Mohammad's avatar
Mohammad committed
251
        from megatron.data import helpers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
252
253
254
255
256
257
258
259
260
        samples_mapping = helpers.build_mapping(
            indexed_dataset.doc_idx,
            indexed_dataset.sizes,
            num_epochs,
            max_num_samples,
            max_seq_length-3, # account for added tokens
            short_seq_prob,
            seed,
            verbose)
261
        print_rank_0(' > done building sapmles index maping')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
262
        np.save(indexmap_filename, samples_mapping, allow_pickle=True)
263
264
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265
        # Make sure all the ranks have built the mapping
266
        print_rank_0(' > elasped time to build and save samples mapping '
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
267
268
                     '(seconds): {:4f}'.format(
                         time.time() - start_time))
269
270
271
272
273
274
275
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276
277

    # Load indexed dataset.
278
    print_rank_0(' > loading indexed mapping from {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
279
280
281
        indexmap_filename))
    start_time = time.time()
    samples_mapping = np.load(indexmap_filename, allow_pickle=True)
282
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
283
        time.time() - start_time))
284
    print_rank_0('    total number of samples: {}'.format(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
285
        samples_mapping.shape[0]))
286

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
    return samples_mapping