utils.py 17 KB
Newer Older
xingjinliang's avatar
xingjinliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""General utilities."""
import json
import os
import sys
from datetime import datetime

import torch

try:
    from transformer_engine.pytorch.optimizers import multi_tensor_applier, multi_tensor_l2norm
except ImportError:
    try:
        from amp_C import multi_tensor_l2norm
        from apex.multi_tensor_apply import multi_tensor_applier
    except ImportError:

        import warnings
        warnings.warn(
            f'Transformer Engine and Apex are not installed. '
            'Falling back to local implementations of '
            'multi_tensor_applier and multi_tensor_l2norm'
        )

        from megatron.core.utils import (
            local_multi_tensor_l2_norm as multi_tensor_l2norm,
            local_multi_tensor_applier as multi_tensor_applier,
        )

from megatron.training import (
    get_args,
    get_adlr_autoresume,
)
from megatron.core import DistributedDataParallel as DDP
from megatron.core import mpu
from megatron.core.datasets.utils import get_blend_from_list
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate
from megatron.core.utils import get_data_parallel_group_if_dtensor, to_local_if_dtensor
from megatron.legacy.model import Float16Module
from megatron.legacy.model.module import param_is_not_shared

try:
    from megatron.core.distributed import TorchFullyShardedDataParallel as torch_FSDP
    ALL_MODULE_WRAPPER_CLASSNAMES = (DDP, torch_FSDP, Float16Module)
except ImportError:
    ALL_MODULE_WRAPPER_CLASSNAMES = (DDP, Float16Module)


def unwrap_model(model, module_instances=ALL_MODULE_WRAPPER_CLASSNAMES):
    return_list = True
    if not isinstance(model, list):
        model = [model]
        return_list = False
    unwrapped_model = []
    for model_module in model:
        while isinstance(model_module, module_instances):
            model_module = model_module.module
        unwrapped_model.append(model_module)
    if not return_list:
        return unwrapped_model[0]
    return unwrapped_model


def calc_params_l2_norm(model):
    """Calculate l2 norm of parameters """
    args = get_args()
    if not isinstance(model, list):
        model = [model]
    # Seperate moe and dense params
    params_data = []
    moe_params_data = []
    data_parallel_group = None

    for model_chunk in model:
        for i, param in enumerate(model_chunk.parameters()):
            data_parallel_group = get_data_parallel_group_if_dtensor(param, data_parallel_group)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if not (param.requires_grad and is_not_tp_duplicate):
                continue
            assert is_not_tp_duplicate
            if not getattr(param, 'allreduce', True):
                assert param_is_not_shared(param)
                param = to_local_if_dtensor(param)
                moe_params_data.append(param.data.float() if args.bf16 else param.data)
            else:
                if param_is_not_shared(param):
                    param = to_local_if_dtensor(param)
                    params_data.append(param.data.float() if args.bf16 else param.data)

    # Calculate dense param norm
    dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device='cuda')
    norm, _ = multi_tensor_applier(
        multi_tensor_l2norm,
        dummy_overflow_buf,
        [params_data],
        False # no per-parameter norm
    )
    norm_2 = norm * norm

    if data_parallel_group is not None:
        torch.distributed.all_reduce(norm_2,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=data_parallel_group)

    # Sum across all model-parallel GPUs(tensor + pipeline).
    torch.distributed.all_reduce(
        norm_2,
        op=torch.distributed.ReduceOp.SUM,
        group=mpu.get_model_parallel_group()
    )
    # Calculate moe norm
    if len(moe_params_data) > 0:
        moe_norm, _ = multi_tensor_applier(
            multi_tensor_l2norm,
            dummy_overflow_buf,
            [moe_params_data],
            False # no per-parameter norm
        )
        moe_norm_2 = moe_norm * moe_norm
        # Sum across expert tensor, model and pipeline parallel GPUs.
        torch.distributed.all_reduce(
            moe_norm_2,
            op=torch.distributed.ReduceOp.SUM,
            group=mpu.get_expert_tensor_model_pipeline_parallel_group()
        )
        norm_2 += moe_norm_2
    return norm_2.item() ** 0.5


def average_losses_across_data_parallel_group(losses):
    """Reduce a tensor of losses across all GPUs."""
    averaged_losses = torch.cat(
        [loss.clone().detach().view(1) for loss in losses])
    torch.distributed.all_reduce(averaged_losses,
                                 group=mpu.get_data_parallel_group())
    averaged_losses = averaged_losses / \
        torch.distributed.get_world_size(group=mpu.get_data_parallel_group())

    return averaged_losses


def report_memory(name):
    """Simple GPU memory report."""
    mega_bytes = 1024.0 * 1024.0
    string = name + ' memory (MB)'
    string += ' | allocated: {}'.format(
        torch.cuda.memory_allocated() / mega_bytes)
    string += ' | max allocated: {}'.format(
        torch.cuda.max_memory_allocated() / mega_bytes)
    string += ' | reserved: {}'.format(
        torch.cuda.memory_reserved() / mega_bytes)
    string += ' | max reserved: {}'.format(
        torch.cuda.max_memory_reserved() / mega_bytes)
    if mpu.get_data_parallel_rank() == 0:
        print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
              flush=True)


def print_params_min_max_norm(optimizer, iteration):
    """Print min, max, and norm of all parameters."""
    index = 0
    rank = torch.distributed.get_rank()
    string = 'iteration, rank, index, tensor-model-parallel, min, max, norm\n'
    optimizer_ = optimizer.optimizer
    for param_group in optimizer_.param_groups:
        for param in param_group['params']:
            index += 1
            min_ = param.data.min()
            max_ = param.data.max()
            norm = torch.linalg.norm(param.data)
            string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
                iteration, rank, index, int(param.tensor_model_parallel))
            string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
    print(string, flush=True)


def check_adlr_autoresume_termination(iteration, model,
                                      optimizer, opt_param_scheduler):
    """Check for autoresume signal and exit if it is received."""
    from megatron.training.checkpointing import save_checkpoint

    args = get_args()
    autoresume = get_adlr_autoresume()
    # Add barrier to ensure consistnecy.
    torch.distributed.barrier()
    if autoresume.termination_requested():
        if args.save:
            save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
        print_rank_0(">>> autoresume termination request found!")
        if torch.distributed.get_rank() == 0:
            autoresume.request_resume()
        print_rank_0(">>> training terminated. Returning")
        sys.exit(0)


def get_ltor_masks_and_position_ids(data,
                                    eod_token,
                                    reset_position_ids,
                                    reset_attention_mask,
                                    eod_mask_loss):
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
    micro_batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = micro_batch_size
    else:
        att_mask_batch = 1
    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

    # Loss mask.
    loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
    if eod_mask_loss:
        loss_mask[data == eod_token] = 0.0

    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(micro_batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i + 1):] -= (i + 1 - prev_index)
                    prev_index = i + 1

    # Convert attention mask to binary:
    attention_mask = (attention_mask < 0.5)

    return attention_mask, loss_mask, position_ids


def get_batch_on_this_cp_rank(batch):
    """ Slice batch input along sequence dimension into multiple chunks,
        which are parallelized across GPUs in a context parallel group.
    """

    # With causal masking, each token only attends to its prior tokens. Simply split
    # sequence into CP chunks can result in severe load imbalance. That's to say, chunks
    # at the end of sequence have bigger workload than others. To address this issue,
    # we split sequence into 2*CP ranks. Assuming CP=2, we then get 4 chunks, chunk_0
    # and chunk_3 are assigned to GPU0, chunk_1 and chunk_2 are assigned to GPU1, so
    # that we can get balanced workload among GPUs in a context parallel group.
    args = get_args()
    cp_size = args.context_parallel_size
    if cp_size > 1:
        cp_rank = mpu.get_context_parallel_rank()
        for key, val in batch.items():
            if val is not None:
                seq_dim = 1 if key != 'attention_mask' else 2
                val = val.view(
                    *val.shape[0:seq_dim],
                    2 * cp_size,
                    val.shape[seq_dim] // (2 * cp_size),
                    *val.shape[(seq_dim + 1) :],
                )
                index = torch.tensor([cp_rank, (2 * cp_size - cp_rank - 1)], 
                                     device="cpu", pin_memory=True).cuda(non_blocking=True)
                val = val.index_select(seq_dim, index)
                val = val.view(*val.shape[0:seq_dim], -1, *val.shape[(seq_dim + 2) :])
                batch[key] = val

    return batch


def print_rank_0(message):
    """If distributed is initialized, print only on rank 0."""
    if torch.distributed.is_initialized():
        if torch.distributed.get_rank() == 0:
            print(message, flush=True)
    else:
        print(message, flush=True)

def is_last_rank():
    return torch.distributed.get_rank() == (
        torch.distributed.get_world_size() - 1)

def print_rank_last(message):
    """If distributed is initialized, print only on last rank."""
    if torch.distributed.is_initialized():
        if is_last_rank():
            print(message, flush=True)
    else:
        print(message, flush=True)


def append_to_progress_log(string, barrier=True):
    """Append given string to progress log."""
    args = get_args()
    if args.save is None:
        return
    progress_log_filename = os.path.join(args.save, "progress.txt")
    if barrier:
        torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        with open(progress_log_filename, 'a') as f:
            job_id = os.getenv('SLURM_JOB_ID', '')
            num_gpus = args.world_size
            f.write(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\tJob ID: {job_id}\t"
                    f"# GPUs: {num_gpus}\t{string}\n")


def get_blend_and_blend_per_split(args):
    """Get blend and blend_per_split from passed-in arguments."""
    use_data_path = args.data_path is not None or \
        args.data_args_path is not None
    use_per_split_data_path = any(
        elt is not None
        for elt in [args.train_data_path,
                    args.valid_data_path,
                    args.test_data_path]) or \
        args.per_split_data_args_path is not None

    blend = None
    blend_per_split = None
    if use_data_path:
        if args.data_args_path is not None:
            assert args.data_path is None
            with open(args.data_args_path, 'r') as f:
                blend = get_blend_from_list(f.read().split())
        else:
            assert args.data_path is not None
            blend = get_blend_from_list(args.data_path)
    elif use_per_split_data_path:
        if args.per_split_data_args_path is not None:
            with open(args.per_split_data_args_path, 'r') as f:
                per_split_data_args = json.load(f)
                # Each element in blend_per_split should be a list of files (and optional
                # weights), so split string if needed.
                for split in ["train", "valid", "test"]:
                    if isinstance(per_split_data_args[split], str):
                        per_split_data_args[split] = per_split_data_args[split].split()

                blend_per_split = [
                    get_blend_from_list(per_split_data_args["train"]),
                    get_blend_from_list(per_split_data_args["valid"]),
                    get_blend_from_list(per_split_data_args["test"])
                ]
        else:
            blend_per_split = [
                get_blend_from_list(args.train_data_path),
                get_blend_from_list(args.valid_data_path),
                get_blend_from_list(args.test_data_path)
            ]
    else:
        blend, blend_per_split = None, None

    return blend, blend_per_split


def get_batch_on_this_tp_rank(data_iterator):

    args = get_args()

    def _broadcast(item):
       if item is not None:
           torch.distributed.broadcast(item, mpu.get_tensor_model_parallel_src_rank(), group=mpu.get_tensor_model_parallel_group())

    if mpu.get_tensor_model_parallel_rank() == 0:

       if data_iterator is not None:
           data = next(data_iterator)
       else:
           data = None

       batch = {
           'tokens': data["tokens"].cuda(non_blocking = True),
           'labels': data["labels"].cuda(non_blocking = True),
           'loss_mask': data["loss_mask"].cuda(non_blocking = True),
           'attention_mask': None if "attention_mask" not in data else data["attention_mask"].cuda(non_blocking = True),
           'position_ids': data["position_ids"].cuda(non_blocking = True)
       }

       if args.pipeline_model_parallel_size == 1:
           _broadcast(batch['tokens'])
           _broadcast(batch['labels'])
           _broadcast(batch['loss_mask'])
           _broadcast(batch['attention_mask'])
           _broadcast(batch['position_ids'])

       elif mpu.is_pipeline_first_stage():
           _broadcast(batch['tokens'])
           _broadcast(batch['attention_mask'])
           _broadcast(batch['position_ids'])

       elif mpu.is_pipeline_last_stage():
           _broadcast(batch['labels'])
           _broadcast(batch['loss_mask'])
           _broadcast(batch['attention_mask'])

    else:

       tokens=torch.empty((args.micro_batch_size,args.seq_length), dtype = torch.int64 , device = torch.cuda.current_device())
       labels=torch.empty((args.micro_batch_size,args.seq_length), dtype = torch.int64 , device = torch.cuda.current_device())
       loss_mask=torch.empty((args.micro_batch_size,args.seq_length), dtype = torch.float32 , device = torch.cuda.current_device())
       if args.create_attention_mask_in_dataloader:
           attention_mask=torch.empty(
                (args.micro_batch_size,1,args.seq_length,args.seq_length), dtype = torch.bool , device = torch.cuda.current_device()
            )
       else:
           attention_mask=None
       position_ids=torch.empty((args.micro_batch_size,args.seq_length), dtype = torch.int64 , device = torch.cuda.current_device())

       if args.pipeline_model_parallel_size == 1:
           _broadcast(tokens)
           _broadcast(labels)
           _broadcast(loss_mask)
           _broadcast(attention_mask)
           _broadcast(position_ids)
 
       elif mpu.is_pipeline_first_stage():
           labels=None
           loss_mask=None
   
           _broadcast(tokens)
           _broadcast(attention_mask)
           _broadcast(position_ids)

       elif mpu.is_pipeline_last_stage():
           tokens=None
           position_ids=None
    
           _broadcast(labels)
           _broadcast(loss_mask)
           _broadcast(attention_mask)
 
       batch = {
           'tokens': tokens,
           'labels': labels,
           'loss_mask': loss_mask,
           'attention_mask': attention_mask,
           'position_ids': position_ids
       }

    return batch


def update_use_dist_ckpt(args):
    args.use_dist_ckpt = args.ckpt_format != "torch"