"torchvision/vscode:/vscode.git/clone" did not exist on "25154f99b5e357caa89527221f89f2d184faafaa"
gen_entityctrl_data.py 10.2 KB
Newer Older
zihanl's avatar
zihanl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

from src.config import get_params
from transformers import AutoTokenizer
import torch
import numpy as np
from tqdm import tqdm
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import string
import os

wn_lemma = WordNetLemmatizer()

stop_words = stopwords.words('english')
stop_words.append("n't")
stop_words.append("'s")
punctuations = list(string.punctuation)
punctuations.append("``")
punctuations.append("''")

stop_words_and_punctuations = stop_words + punctuations
stop_words_and_punctuations_table = {word: True for word in stop_words_and_punctuations}

label_set = ["O", "B", "I"]

def read_data(input_datapath):
    data = []
    print("Reading data from %s" % input_datapath)
    with open(input_datapath, "r") as f:
        for i, line in enumerate(f):
            line = line.strip()
            splits = line.split("\t")
            length = len(splits)
            assert length == 2 or length == 4

            # length is 2: dialog context + response
            # length is 4: dialog context + topic + control sentence + response
            if length == 2:
                # dialog context + response
                data.append(line)
            else:
                # only need dialog context + control sentence + response
                data.append(splits[0] + "\t" + splits[2] + "\t" + splits[3])

    return data


def write_data(output_datapath, output_data):
    print("Writing data to %s" % output_datapath)
    with open(output_datapath, "w") as fw:
        for data_sample in output_data:
            fw.write(data_sample + "\n")


def detect_entities(tokenizer, ner_model, sentence):
    tokens = sentence.split()
    token_ids, first_tok_masks = [tokenizer.cls_token_id], [0]
    for token in tokens:
        subs_ = tokenizer.tokenize(token)
        assert len(subs_) > 0
        
        token_ids.extend(tokenizer.convert_tokens_to_ids(subs_))
        first_tok_masks.extend([1] + [0] * (len(subs_) - 1))
    
    token_ids.append(tokenizer.sep_token_id)
    first_tok_masks.append(0)
    
    token_ids = torch.LongTensor([token_ids]).cuda()
    predictions = ner_model(token_ids)

    predictions = predictions[0].data.cpu().numpy() # (seq_len, 3)
    pred_ids = list(np.argmax(predictions, axis=1))

    assert len(pred_ids) == len(first_tok_masks)
    preds_for_each_word = []
    for pred_id, mask in zip(pred_ids, first_tok_masks):
        if mask == 1:
            preds_for_each_word.append(label_set[pred_id])

    assert len(preds_for_each_word) == len(tokens)

    # extract entities
    entity_list = []
    temp = []
    for i, (token, pred) in enumerate(zip(tokens, preds_for_each_word)):
        if pred == "O":
            if len(temp) > 0:
                entity_list.append(" ".join(temp))
                temp = []
        else: 
            # pred == "B" or pred == "I"
            temp.append(token)

    return entity_list


def generate_entity_control_data(tokenizer, ner_model, input_data):
    # aim to generate:
    # dialog context + entity control code (optional) + relevant control sentence (contain entity) + response
    
    output_data = []
    ## TODO
    n_skip, n_skip_no_overlap, n_skip_one_contain_another = 0, 0, 0
    n_control, n_entity_control, n_overlap_control = 0, 0, 0
    total_num_control_code = 0
    for sample_idx, data_item in enumerate(tqdm(input_data)):
        # # Debug only
        # if sample_idx > 1000:
        #     break

        # 1. detect entities for dialog context, control sentence and response
        splits = data_item.split("\t")
        if len(splits) == 2:
            output_data.append(data_item)
            continue
        assert len(splits) == 3
        
        last_turn = splits[0].split(" [SEP] ")[-1]
        control_sent = splits[1]
        response = splits[2]

        if control_sent in response or response in control_sent:
            # if the whole control_sent is a part of response or vise versa, skip this data sample 
            n_skip += 1
            n_skip_one_contain_another += 1
            continue

        last_turn_entities = detect_entities(tokenizer, ner_model, last_turn)
        control_sent_entities = detect_entities(tokenizer, ner_model, control_sent)
        response_entities = detect_entities(tokenizer, ner_model, response)

        # 2. generate control code:
        # 2.1 If there is one or more than one common entity in last_turn, control sentence and response. No need to use entity as control.
        # 2.2 If the entity only exists in control sentence and response, use this as the control code.
        # 2.3 If there is no overlaped entity or words between control sentence and response, skip this data sample.
        # 2.4 If there is no overlapped entity but there are overlapped words, add entity in the control sentence (if any) as the control code if it is not in the dialog context

        # TODO
        # In general, need to trim the control sentence when it is too long.
        # Need to lowercase to match?

        # calculate common entity between control sentence and response
        common_entity_list = []
        for ctrl_entity in control_sent_entities:
            for resp_entity in response_entities:
                if resp_entity in ctrl_entity:
                    common_entity_list.append(ctrl_entity)
                    break
                elif ctrl_entity in resp_entity:
                    common_entity_list.append(resp_entity)
                    break
        
        if len(common_entity_list) == 0:
            # calculate overlap between control sentence and response
            control_word_list = control_sent.split()
            response_word_list = response.split()
            response_word_table = {wn_lemma.lemmatize(word): True for word in response_word_list}
            overlap_phrases = []
            temp = []
            for word in control_word_list:
                if word.lower() in stop_words_and_punctuations_table:
                    continue
                
                if wn_lemma.lemmatize(word) in response_word_table:
                    temp.append(word)
                else:
                    if len(temp) > 0:
                        if len(temp) > 4:
                            temp = temp[:4]
                        overlap_phrases.append(" ".join(temp))
                        temp = []

            if len(overlap_phrases) == 0:
                # skip this data sample
                n_skip += 1
                n_skip_no_overlap += 1
                continue
            
            n_control += 1
            control_code_list = []

            if len(control_sent_entities) > 0:
                n_entity_control += 1
                # reorder control_sent_entities based on the length of the entities (in a reverse order)
                control_sent_entities = sorted(control_sent_entities, key=len, reverse=True)
                for entity in control_sent_entities:
                    if entity not in last_turn:
                        add_flag = True
                        for code in control_code_list:
                            if entity in code:
                                add_flag = False
                                break
                        if add_flag:
                            control_code_list.append(entity)
            else:
                n_overlap_control += 1
                # reorder overlap_phrases based on the length of the phrases (in a reverse order)
                overlap_phrases = sorted(overlap_phrases, key=len, reverse=True)[:3]
                for phrase in overlap_phrases:
                    if phrase not in last_turn:
                        add_flag = True
                        for code in control_code_list:
                            if phrase in code:
                                # remove repeat word
                                add_flag = False
                                break
                        if add_flag:
                            control_code_list.append(phrase)

        else:
            n_entity_control += 1
            n_control += 1
            control_code_list = []
            # reorder common_entity_list based on the length of the entities (in a reverse order)
            common_entity_list = sorted(common_entity_list, key=len, reverse=True)
            for entity in common_entity_list:
                if entity not in last_turn:
                    add_flag = True
                    for code in control_code_list:
                        if entity in code:
                            add_flag = False
                            break
                    if add_flag:
                        control_code_list.append(entity)

        total_num_control_code += len(control_code_list)

        if len(control_code_list) > 0:
            output_data.append(splits[0] + "\t" + " [CTRL] ".join(control_code_list) + "\t" + control_sent + "\t" + response)
        else:
            output_data.append(splits[0] + "\t" + control_sent + "\t" + response)

    avg_num_control_code = total_num_control_code * 1.0 / n_control

    print("number of skip sentences: %d (one contain another: %d + no overlap: %d)" % (n_skip, n_skip_one_contain_another, n_skip_no_overlap))
    print("Total data size: %d. Number of control case: %d (entity control: %d + overlap control: %d)" % (len(output_data), n_control, n_entity_control, n_overlap_control))
    print("Number of control code: %d vs. number of control case: %d (averaged control code per case: %.4f)" % (total_num_control_code, n_control, avg_num_control_code))

    return output_data


def main(params):
    # load model and tokenizer
    model_saved_path = os.path.join(params.saved_folder, params.model_name+".pt")
    ner_model = torch.load(model_saved_path)["model"]
    ner_model.cuda()
    ner_model.eval()
    tokenizer = AutoTokenizer.from_pretrained(params.model_name)

    # load data
    datafolder = os.path.join(params.default_folder, params.infer_datafolder)
    input_datapath = os.path.join(datafolder, params.infer_dataname)
    output_datapath = os.path.join(datafolder, params.output_dataname)

    # read input data
    input_data = read_data(input_datapath)

    # process data (generate entity control data)
    output_data = generate_entity_control_data(tokenizer, ner_model, input_data)

    # write output data
    write_data(output_datapath, output_data)


if __name__ == "__main__":
    params = get_params()
    main(params)