realm_model.py 20 KB
Newer Older
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F

5
from megatron import get_args
6
from megatron.checkpointing import load_checkpoint
7
from megatron.data.realm_index import detach, BlockData, FaissMIPSIndex
8
from megatron.model import BertModel
9
from megatron.model.utils import get_linear_layer, init_method_normal
10
from megatron.module import MegatronModule
11
12
from megatron.utils import report_memory
from megatron import mpu
13
14


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class REALMAnswerSpanModel(MegatronModule):
    def __init__(self, realm_model, mlp_hidden_size=64):
        super(REALMAnswerSpanModel, self).__init__()
        self.realm_model = realm_model
        self.mlp_hidden_size = mlp_hidden_size

        args = get_args()
        init_method = init_method_normal(args.init_method_std)
        self.fc1 = get_linear_layer(2 * args.hidden_size, self.mlp_hidden_size, init_method)
        self._fc1_key = 'fc1'
        self.fc2 = get_linear_layer(self.mlp_hidden_size, 1, init_method)
        self._fc2_key = 'fc2'

        max_length = 10
        self.start_ends = []
        for length in range(max_length):
            self.start_ends.extend([(i, i + length) for i in range(288 - length)])

    def forward(self, question_tokens, question_attention_mask, answer_tokens, answer_token_lengths):
        lm_logits, block_probs, topk_block_tokens = self.realm_model(
            question_tokens, question_attention_mask, query_block_indices=None, return_topk_block_tokens=True)

        batch_span_reps, batch_loss_masks = [], []
        # go through batch one-by-one
        for i in range(len(answer_token_lengths)):
            answer_length = answer_token_lengths[i]
            answer_span_tokens = answer_tokens[i][:answer_length]
            span_reps, loss_masks = [], []
            # go through the top k for the batch item
            for logits, block_tokens in zip(lm_logits[i], topk_block_tokens[i]):
                block_logits = logits[len(logits) / 2:]
                span_starts = range(len(block_tokens) - (answer_length - 1))

                # record the start, end indices of spans which match the answer
                matching_indices = set([
                    (idx, idx + answer_length - 1) for idx in span_starts
                    if np.array_equal(block_tokens[idx:idx + answer_length], answer_span_tokens)
                ])
                # create a mask for computing the loss on P(y | z, x)
                # [num_spans]
                loss_masks.append(torch.LongTensor([int(idx_pair in matching_indices) for idx_pair in self.start_ends]))

                # get all of the candidate spans that need to be fed to MLP
                # [num_spans x 2 * embed_size]
                span_reps.append([torch.cat((block_logits[s], block_logits[e])) for (s, e) in self.start_ends])

            # data for all k blocks for a single batch item
            # [k x num_spans]
            batch_loss_masks.append(torch.stack(loss_masks))
            # [k x num_spans x 2 * embed_size]
            batch_span_reps.append(torch.stack(span_reps))

        # data for all batch items
        # [batch_size x k x num_spans]
        batch_loss_masks = torch.stack(batch_loss_masks)
        batch_span_reps = torch.stack(batch_span_reps)
        # [batch_size x k x num_spans]
        batch_span_logits = self.fc2(self.fc1(batch_span_reps)).squeeze()

        return batch_span_logits, batch_loss_masks, block_probs

        # block_probs = block_probs.unsqueeze(2).unsqueeze(3).expand_as(lm_logits)
        # lm_logits = torch.sum(lm_logits * block_probs, dim=1)


80
81
82
83
class REALMBertModel(MegatronModule):
    def __init__(self, retriever):
        super(REALMBertModel, self).__init__()
        bert_args = dict(
84
            num_tokentypes=2,
85
86
87
88
89
90
91
92
            add_binary_head=False,
            parallel_output=True
        )
        self.lm_model = BertModel(**bert_args)
        load_checkpoint(self.lm_model, optimizer=None, lr_scheduler=None)
        self._lm_key = 'realm_lm'

        self.retriever = retriever
93
        self.top_k = self.retriever.top_k
94
        self._retriever_key = 'retriever'
95
        # self.eval()
96

97
    def forward(self, tokens, attention_mask, query_block_indices, return_topk_block_tokens=False):
98
99
100
101
102
103
104
105
        dset = self.retriever.ict_dataset

        det_tokens = detach(tokens)[0].tolist()
        det_attention = detach(attention_mask)[0].tolist()
        # print("\nTokens: ", det_tokens, '\n', flush=True)
        # print("\nAttention: ", det_attention, '\n', flush=True)
        # print("pad id: ", dset.pad_id, flush=True)

Neel Kant's avatar
Neel Kant committed
106
107
108
109
110
        # assert bool(0 in det_attention) == bool(dset.pad_id in det_tokens)
        # if 0 in det_attention:
        #     idx_padid = det_tokens.index(dset.pad_id)
        #     idx_attn = det_attention.index(0)
        #     assert idx_padid == idx_attn, (idx_padid, idx_attn)
111
112
113
114
115

        # text = dset.decode_tokens(det_tokens)
        # print(text, flush=True)


116
        # [batch_size x k x seq_length]
117
118
119
120
121
122
123
124
125

        args = get_args()
        if args.allow_trivial_doc:
            topk_block_tokens, topk_block_attention_mask = self.retriever.retrieve_evidence_blocks(
                tokens, attention_mask, query_block_indices=None, include_null_doc=True)
        else:
            topk_block_tokens, topk_block_attention_mask = self.retriever.retrieve_evidence_blocks(
                tokens, attention_mask, query_block_indices=query_block_indices, include_null_doc=True)

126
127
        # print("Top k block shape: ", topk_block_tokens.shape, flush=True)

128
        batch_size = tokens.shape[0]
129
130
        # create a copy in case it needs to be returned
        ret_topk_block_tokens = np.array(topk_block_tokens)
131

132
        seq_length = topk_block_tokens.shape[2]
133
134
135
136
        long_tensor = torch.cuda.LongTensor
        topk_block_tokens = long_tensor(topk_block_tokens).reshape(-1, seq_length)
        topk_block_attention_mask = long_tensor(topk_block_attention_mask).reshape(-1, seq_length)
        # print('Block token shape: ', topk_block_tokens.shape, flush=True)
137

138
        # [batch_size x k x embed_size]
139
        true_model = self.retriever.ict_model.module.module
140
        fresh_block_logits = true_model.embed_block(topk_block_tokens, topk_block_attention_mask)
141
        fresh_block_logits = fresh_block_logits.reshape(batch_size, self.top_k, -1).float()
142
        # print('Fresh block logits shape: ', fresh_block_logits.shape, flush=True)
143

Neel Kant's avatar
Neel Kant committed
144
        # [batch_size x 1 x embed_size]
145
        query_logits = true_model.embed_query(tokens, attention_mask).unsqueeze(1).float()
146

147
        # [batch_size x k]
Neel Kant's avatar
Neel Kant committed
148
        fresh_block_scores = torch.matmul(query_logits, torch.transpose(fresh_block_logits, 1, 2)).squeeze()
149
        # fresh_block_scores = fresh_block_scores / np.sqrt(query_logits.shape[2])
150
151
        block_probs = F.softmax(fresh_block_scores, dim=1)

152
153
        # [batch_size * k x seq_length]
        tokens = torch.stack([tokens.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
154
155
156
        # assert all(torch.equal(tokens[i], tokens[0]) for i in range(self.top_k))
        # assert all(torch.equal(tokens[i], tokens[self.top_k]) for i in range(self.top_k, 2 * self.top_k))
        # assert not any(torch.equal(tokens[i], tokens[0]) for i in range(self.top_k, batch_size * self.top_k))
157
        attention_mask = torch.stack([attention_mask.unsqueeze(1)] * self.top_k, dim=1).reshape(-1, seq_length)
158

159
        # [batch_size * k x 2 * seq_length]
160
161
162
163
        lm_input_batch_shape = (batch_size * self.top_k, 2 * seq_length)
        all_tokens = torch.zeros(lm_input_batch_shape).long().cuda()
        all_attention_mask = all_tokens.clone()
        all_token_types = all_tokens.clone()
164

165
        query_lengths = torch.sum(attention_mask, axis=1)
166
167
168
169
170
171
172
        # all blocks (including null ones) will have two SEP tokens
        block_sep_indices = (topk_block_tokens == dset.sep_id).nonzero().reshape(batch_size * self.top_k, 2, 2)

        # block body starts after the first SEP
        block_starts = block_sep_indices[:, 0, 1] + 1
        # block body ends after the second SEP
        block_ends = block_sep_indices[:, 1, 1] + 1
173

174
        # print('-' * 100)
175
176
177
178
179
        for row_num in range(all_tokens.shape[0]):
            q_len = query_lengths[row_num]
            b_start = block_starts[row_num]
            b_end = block_ends[row_num]
            # new tokens = CLS + query + SEP + block + SEP
180
181
            new_tokens_length = q_len + b_end - b_start

182
183
            # splice query and block tokens accordingly
            all_tokens[row_num, :q_len] = tokens[row_num, :q_len]
184
            all_tokens[row_num, q_len:new_tokens_length] = topk_block_tokens[row_num, b_start:b_end]
185
186
            all_tokens[row_num, new_tokens_length:] = self.retriever.ict_dataset.pad_id

187
            # print(dset.decode_tokens(detach(all_tokens[row_num]).tolist()), '\n', flush=True)
188

189
190
            all_attention_mask[row_num, :new_tokens_length] = 1
            all_attention_mask[row_num, new_tokens_length:] = 0
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        # print('-' * 100)

        # args = get_args()
        # if args.rank == 0:
        #     torch.save({'lm_tokens': all_tokens,
        #                 'lm_attn_mask': all_attention_mask,
        #                 'query_tokens': tokens,
        #                 'query_attn_mask': attention_mask,
        #                 'query_logits': query_logits,
        #                 'block_tokens': topk_block_tokens,
        #                 'block_attn_mask': topk_block_attention_mask,
        #                 'block_logits': fresh_block_logits,
        #                 'block_probs': block_probs,
        #                 }, 'final_lm_inputs.data')
205
206
207

        # assert all(torch.equal(all_tokens[i], all_tokens[0]) for i in range(self.top_k))
        # assert all(torch.equal(all_attention_mask[i], all_attention_mask[0]) for i in range(self.top_k))
208

209
        # [batch_size x k x 2 * seq_length x vocab_size]
210
        lm_logits, _ = self.lm_model.forward(all_tokens, all_attention_mask, all_token_types)
211
        lm_logits = lm_logits.reshape(batch_size, self.top_k, 2 * seq_length, -1)
212
213
214
215

        if return_topk_block_tokens:
            return lm_logits, block_probs, ret_topk_block_tokens

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        return lm_logits, block_probs

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._lm_key] = self.lm_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        state_dict_[self._retriever_key] = self.retriever.state_dict_for_save_checkpoint(destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.lm_model.load_state_dict(state_dict[self._lm_key], strict)
        self.retriever.load_state_dict(state_dict[self._retriever_key], strict)


class REALMRetriever(MegatronModule):
    """Retriever which uses a pretrained ICTBertModel and a HashedIndex"""
    def __init__(self, ict_model, ict_dataset, block_data, hashed_index, top_k=5):
        super(REALMRetriever, self).__init__()
        self.ict_model = ict_model
        self.ict_dataset = ict_dataset
        self.block_data = block_data
        self.hashed_index = hashed_index
        self.top_k = top_k
        self._ict_key = 'ict_model'

246
247
248
    def reload_index(self):
        args = get_args()
        self.hashed_index.reset_index()
Neel Kant's avatar
Neel Kant committed
249
        self.block_data = BlockData.load_from_file(args.block_data_path)
250
251
        self.hashed_index.add_block_embed_data(self.block_data)

252
    def prep_query_text_for_retrieval(self, query_text):
253
254
255
256
257
258
259
        padless_max_len = self.ict_dataset.max_seq_length - 2
        query_tokens = self.ict_dataset.encode_text(query_text)[:padless_max_len]

        query_tokens, query_pad_mask = self.ict_dataset.concat_and_pad_tokens(query_tokens)
        query_tokens = torch.cuda.LongTensor(np.array(query_tokens).reshape(1, -1))
        query_pad_mask = torch.cuda.LongTensor(np.array(query_pad_mask).reshape(1, -1))

260
261
262
263
264
265
266
        return query_tokens, query_pad_mask

    def retrieve_evidence_blocks_text(self, query_text):
        """Get the top k evidence blocks for query_text in text form"""
        print("-" * 100)
        print("Query: ", query_text)
        query_tokens, query_pad_mask = self.prep_query_text_for_retrieval(query_text)
Neel Kant's avatar
Neel Kant committed
267
268
        topk_block_tokens, _ = self.retrieve_evidence_blocks(query_tokens, query_pad_mask)
        for i, block in enumerate(topk_block_tokens[0]):
269
270
271
            block_text = self.ict_dataset.decode_tokens(block)
            print('\n    > Block {}: {}'.format(i, block_text))

272
    def retrieve_evidence_blocks(self, query_tokens, query_pad_mask, query_block_indices=None, include_null_doc=False):
273
274
        """Embed blocks to be used in a forward pass"""
        with torch.no_grad():
275
276
            if hasattr(self.ict_model, 'module'):
                true_model = self.ict_model.module
277
278
                if hasattr(true_model, 'module'):
                    true_model = true_model.module
279
280
            else:
                true_model = self.ict_model
281
282
            # print("true model: ", true_model, flush=True)

283
            query_embeds = true_model.embed_query(query_tokens, query_pad_mask)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            _, block_indices = self.hashed_index.search_mips_index(query_embeds, top_k=self.top_k, reconstruct=False)
            all_topk_tokens, all_topk_pad_masks = [], []

            # this will result in no candidate exclusion
            if query_block_indices is None:
                query_block_indices = [-1] * len(block_indices)

            top_k_offset = int(include_null_doc)
            for query_idx, indices in enumerate(block_indices):
                # [k x meta_dim]
                # exclude trivial candidate if it appears, else just trim the weakest in the top-k
                topk_metas = [self.block_data.meta_data[idx] for idx in indices if idx != query_block_indices[query_idx]]
                topk_block_data = [self.ict_dataset.get_block(*block_meta) for block_meta in topk_metas[:self.top_k - top_k_offset]]
                if include_null_doc:
                    topk_block_data.append(self.ict_dataset.get_null_block())
                topk_tokens, topk_pad_masks = zip(*topk_block_data)

                all_topk_tokens.append(np.array(topk_tokens))
                all_topk_pad_masks.append(np.array(topk_pad_masks))

            # [batch_size x k x seq_length]
            return np.array(all_topk_tokens), np.array(all_topk_pad_masks)
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._ict_key] = self.ict_model.state_dict_for_save_checkpoint(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        self.ict_model.load_state_dict(state_dict[self._ict_key], strict)


class ICTBertModel(MegatronModule):
    """Bert-based module for Inverse Cloze task."""
    def __init__(self,
                 ict_head_size,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
        super(ICTBertModel, self).__init__()
        bert_args = dict(
            num_tokentypes=num_tokentypes,
            add_binary_head=False,
            ict_head_size=ict_head_size,
            parallel_output=parallel_output
        )
        assert not (only_block_model and only_query_model)
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model

        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
            self.query_model = BertModel(**bert_args)
            self._query_key = 'question_model'

        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
            self.block_model = BertModel(**bert_args)
            self._block_key = 'context_model'

    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask, only_query=False, only_block=False):
        """Run a forward pass for each of the models and compute the similarity scores."""
        if only_query:
            return self.embed_query(query_tokens, query_attention_mask)

        if only_block:
            return self.embed_block(block_tokens, block_attention_mask)

        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)
Neel Kant's avatar
Neel Kant committed
360
        return query_logits, block_logits
361
362

        # [batch x embed] * [embed x batch]
Neel Kant's avatar
Neel Kant committed
363
364
        # retrieval_scores = query_logits.matmul(torch.transpose(block_logits, 0, 1))
        # return retrieval_scores
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
            query_types = torch.zeros(query_tokens.shape).type(torch.int64).cuda()
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
            block_types = torch.zeros(block_tokens.shape).type(torch.int64).cuda()
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")

    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        if self.use_query_model:
            print("Loading ICT query model", flush=True)
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            print("Loading ICT block model", flush=True)
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)
Neel Kant's avatar
Neel Kant committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

    def init_state_dict_from_bert(self):
        args = get_args()
        import os
        from megatron import mpu
        from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
        tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
        if not os.path.isfile(tracker_filename):
            raise FileNotFoundError("Could not find BERT load for ICT")
        with open(tracker_filename, 'r') as f:
            iteration = int(f.read().strip())
            assert iteration > 0

        checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
        if mpu.get_data_parallel_rank() == 0:
            print('global rank {} is loading checkpoint {}'.format(
                torch.distributed.get_rank(), checkpoint_name))

        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except BaseException:
            raise ValueError("Could not load checkpoint")

        model_dict = state_dict['model']['language_model']
        self.query_model.language_model.load_state_dict(model_dict)
        self.block_model.language_model.load_state_dict(model_dict)
        query_ict_head_state_dict = self.state_dict_for_save_checkpoint()[self._query_key]['ict_head']
        self.block_model.ict_head.load_state_dict(query_ict_head_state_dict)