evaluate.py 8.24 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""GPT zero-shot evaluation."""
Mohammad's avatar
Mohammad committed
17
18
19
20
21

import math

import torch

Neel Kant's avatar
Neel Kant committed
22
from megatron import get_args
23
from megatron import print_rank_0, is_last_rank
Mohammad's avatar
Mohammad committed
24
25
26
from megatron import get_tokenizer
from megatron import mpu
from megatron.checkpointing import load_checkpoint
27
from megatron.model import GPTModel, GPTModelFirstStage, GPTModelLastStage, GPTModelIntermediateStage
Jared Casper's avatar
Jared Casper committed
28
from megatron.training import get_model
Mohammad's avatar
Mohammad committed
29
from megatron.utils import get_ltor_masks_and_position_ids
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
Mohammad's avatar
Mohammad committed
31
32
from tasks.finetune_utils import build_data_loader

Raul Puri's avatar
Raul Puri committed
33
from .datasets import build_dataset
Mohammad's avatar
Mohammad committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def get_model_provider(eval_metric):
    """Based on evaluation metric set the parallel-output flag and
    return the model provider."""

    def model_provider():
        """Build the model."""

        if eval_metric == 'loss':
            parallel_output = True
        elif eval_metric == 'accuracy':
            parallel_output = False
        else:
            raise NotImplementedError('output type for {} evaluation metric '
                                      'is not supported.'.format(eval_metric))

51
        print_rank_0('building GPT model ...')
52
53
54
        if mpu.get_pipeline_model_parallel_world_size() > 1:
            # Determine model based on position of stage in pipeline.
            if mpu.is_pipeline_first_stage():
55
                model = GPTModelFirstStage(num_tokentypes=0)
56
            elif mpu.is_pipeline_last_stage():
57
                model = GPTModelLastStage(
58
59
                    parallel_output=parallel_output, num_tokentypes=0)
            else:
60
                model = GPTModelIntermediateStage(num_tokentypes=0)
61
        else:
62
            model = GPTModel(num_tokentypes=0, parallel_output=parallel_output)
Mohammad's avatar
Mohammad committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

        return model

    return model_provider


def process_batch(batch):
    """Process batch and produce inputs for the model."""
    args = get_args()
    tokenizer = get_tokenizer()

    loss_mask = batch['pad_mask'].long().cuda().contiguous().byte()
    tokens_ = batch['text'].long().cuda().contiguous()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
        tokens,
        tokenizer.eod,
        args.reset_position_ids,
        args.reset_attention_mask,
85
        args.eod_mask_loss)
Mohammad's avatar
Mohammad committed
86
87
88
89
90
91
92
93
94
95
96

    return tokens, labels, attention_mask, position_ids, loss_mask


def forward_step(batch, model, eval_metric):
    """Forward step."""

    # Get the batch.
    tokens, labels, attention_mask, position_ids, loss_mask = process_batch(
        batch)

97
98
99
100
    # Tell the model what our actual batch size will be
    args = get_args()
    args.micro_batch_size = len(labels)

Mohammad's avatar
Mohammad committed
101
    # Forward model.
Jared Casper's avatar
Jared Casper committed
102
    input_tensor = recv_forward()
Mohammad's avatar
Mohammad committed
103

104
105
106
107
108
109
110
111
112
113
114
    # Forward pass through the model.
    if mpu.is_pipeline_first_stage():
        assert input_tensor is None
        if mpu.is_pipeline_last_stage():
            output = model(tokens, position_ids, attention_mask)
        else:
            output = model(tokens, position_ids, attention_mask)
    else:
        assert input_tensor is not None
        output = model(input_tensor, attention_mask)

Jared Casper's avatar
Jared Casper committed
115
    send_forward(output)
116
117
118
119
120
121
122
123
124

    if mpu.is_pipeline_last_stage():
        # For loss, return the unreduced loss.
        if eval_metric == 'loss':
            losses = mpu.vocab_parallel_cross_entropy(
                output.contiguous().float(), labels.contiguous())
            loss = torch.sum(
                losses.view(-1) * loss_mask.contiguous().view(-1).float())
            return loss
Mohammad's avatar
Mohammad committed
125

126
127
128
129
130
131
132
        # For accuracy, return the number of correctly predicted samples.
        if eval_metric == 'accuracy':
            outputs = torch.argmax(output, -1)
            correct = (outputs == labels).float()
            correct[(1 - loss_mask).bool()] = 1
            correct = correct.prod(-1)
            return correct.sum()
Mohammad's avatar
Mohammad committed
133

134
135
136
        raise NotImplementedError('forward method for evaluation metric {} '
                                  'is not implemented.'.format(eval_metric))
    return None
Mohammad's avatar
Mohammad committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155


def evaluate(data_loader, model, eval_metric):
    """Evaluation."""
    args = get_args()

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_output = 0.0
    with torch.no_grad():
        # For all the batches in the dataset.
        for iteration, batch in enumerate(data_loader):
            if iteration % args.log_interval == 0:
                print_rank_0('> working on iteration: {}'.format(iteration))
            # Forward evaluation.
            output = forward_step(batch, model, eval_metric)

            # Reduce across processes.
156
157
158
            if mpu.is_pipeline_last_stage():
                torch.distributed.all_reduce(output,
                                             group=mpu.get_data_parallel_group())
Mohammad's avatar
Mohammad committed
159

160
                total_output += output
Mohammad's avatar
Mohammad committed
161
162
163
164
165
166
167
168
169
170
171

    return total_output


def evaluate_and_print_results(task, data_loader, model, eval_metric):
    """Evaluate and print results on screen."""

    # Evaluate and get results.
    output = evaluate(data_loader, model, eval_metric)

    string = ' validation results on {} | '.format(task)
172
173
174
175
176
177
178
179
180
181
182
183
    if is_last_rank():
        if eval_metric == 'loss':
            num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens
            num_original_tokens = data_loader.dataset.num_original_tokens
            val_loss = output / (num_tokenized_tokens - 1)
            ppl = math.exp(min(20, val_loss))
            token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1)
            adjusted_ppl = math.exp(min(20, val_loss * token_ratio))
            string += 'avg loss: {:.4E} | '.format(val_loss)
            string += 'ppl: {:.4E} | '.format(ppl)
            string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl)
            string += 'token ratio: {} |'.format(token_ratio)
Mohammad's avatar
Mohammad committed
184

185
186
187
188
189
190
191
192
193
194
        elif eval_metric == 'accuracy':
            num_examples = len(data_loader.dataset)
            acc = output / num_examples
            string += 'number correct: {:.4E} | '.format(output)
            string += 'total examples: {:.4E} | '.format(num_examples)
            string += 'avg accuracy: {:.4E}'.format(acc)

        else:
            raise NotImplementedError('evaluation method for {} metric is not '
                                      'implemented yet.'.format(eval_metric))
Mohammad's avatar
Mohammad committed
195

196
197
198
199
        length = len(string) + 1
        print('-' * length)
        print(string)
        print('-' * length)
Mohammad's avatar
Mohammad committed
200
201
202
203
204
205


def main():
    """Main program."""
    args = get_args()

Jared Casper's avatar
Jared Casper committed
206
207
208
209
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()

Mohammad's avatar
Mohammad committed
210
211
212
213
214
215
216
217
218
219
220
221
222
    if args.task == 'LAMBADA':
        eval_metric = 'accuracy'
    elif args.task == 'WIKITEXT103':
        eval_metric = 'loss'
    else:
        raise NotImplementedError('{} task is not implemented.'.format(
            args.task))

    # Set up model and load checkpoint.
    model = get_model(get_model_provider(eval_metric))
    if args.load is not None:
        _ = load_checkpoint(model, None, None)

Jared Casper's avatar
Jared Casper committed
223
224
225
    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]

Mohammad's avatar
Mohammad committed
226
227
    # Data stuff.
    dataset = build_dataset(args.task)
228
    dataloader = build_data_loader(dataset, args.micro_batch_size,
Mohammad's avatar
Mohammad committed
229
230
231
232
233
234
                                   args.num_workers, drop_last=False)

    # Run evaluation.
    evaluate_and_print_results(args.task, dataloader, model, eval_metric)

    print_rank_0('done :-)')