test_initialize.py 3.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Neel Kant's avatar
Neel Kant committed
16
17
18
19
from commons import print_separator
from commons import initialize_distributed
import mpu
import torch
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import sys
sys.path.append("../..")


def test_initialize_model_parallel(model_parallel_size):

    if torch.distributed.get_rank() == 0:
        print('> testing initialize_model_parallel with size {} ...'.format(
            model_parallel_size))
    model_parallel_size_ = min(model_parallel_size,
                               torch.distributed.get_world_size())
    assert not mpu.model_parallel_is_initialized()
    mpu.initialize_model_parallel(model_parallel_size_)
    assert mpu.model_parallel_is_initialized()

    # Checks.
    def check(group, world_size, rank):
        assert world_size == torch.distributed.get_world_size(group=group)
        assert rank == torch.distributed.get_rank(group=group)

    # Model parallel.
    world_size = model_parallel_size_
    rank = torch.distributed.get_rank() % model_parallel_size_
    assert world_size == mpu.get_model_parallel_world_size()
    assert rank == mpu.get_model_parallel_rank()
    check(mpu.get_model_parallel_group(), world_size, rank)

    # Data parallel.
    world_size = torch.distributed.get_world_size() // model_parallel_size_
    rank = torch.distributed.get_rank() // model_parallel_size
    assert world_size == mpu.get_data_parallel_world_size()
    assert rank == mpu.get_data_parallel_rank()
    check(mpu.get_data_parallel_group(), world_size, rank)

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>> passed the test :-)')


def test_get_model_parallel_src_rank(model_parallel_size_):

    if torch.distributed.get_rank() == 0:
        print('> testing get_model_parallel_src_rank with size {} ...'.format(
            model_parallel_size_))
    model_parallel_size = min(model_parallel_size_,
                              torch.distributed.get_world_size())
    assert not mpu.model_parallel_is_initialized()
    mpu.initialize_model_parallel(model_parallel_size)
    assert mpu.model_parallel_is_initialized()

    # Checks
    src_rank = torch.distributed.get_rank() - mpu.get_model_parallel_rank()
    assert mpu.get_model_parallel_src_rank() == src_rank

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>> passed the test :-)')


if __name__ == '__main__':

    initialize_distributed()
    world_size = torch.distributed.get_world_size()
    model_parallel_size = 1
    while model_parallel_size <= world_size:
        print_separator('test initialize model parallel')
        test_initialize_model_parallel(model_parallel_size)
        print_separator('test model parallel source rank')
        test_get_model_parallel_src_rank(model_parallel_size)
        model_parallel_size *= 2