datasets.py 5.72 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Mohammad's avatar
Mohammad committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Zero-shot datasets."""

import json
import math

import numpy as np
import torch

Neel Kant's avatar
Neel Kant committed
24
25
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from megatron import get_tokenizer
from .detokenizer import get_detokenizer


def build_dataset(task):
    """Helper function to select and build dataset."""

    if task == 'LAMBADA':
        return _build_lambada_dataset()
    if task == 'WIKITEXT103':
        return _build_wikitext103_dataset()

    raise NotImplementedError('dataset for {} task is not '
                              'implemented.'.format(task))


class _LMDataset(torch.utils.data.Dataset):

    def __init__(self, tokens, seq_len, pad_idx, num_original_tokens,
                 num_tokenized_tokens, overalapping_eval=None):
        self.tokens = tokens
        self.seq_len = seq_len
        self.pad_idx = pad_idx
        self.overalapping_eval = overalapping_eval
        if self.overalapping_eval is None:
            self.overalapping_eval = self.seq_len
        self.overalapping_eval = max(1, self.overalapping_eval)
        self.num_original_tokens = num_original_tokens
        self.num_tokenized_tokens = num_tokenized_tokens
        self.total_targets = len(self.tokens) - 1
        # remove first sequence tokens
        targets = max(self.total_targets - self.overalapping_eval, 0)
        self.total_sequences = max(
            math.ceil(targets / self.overalapping_eval) + 1, 1)

    def __len__(self):
        return self.total_sequences

    def __getitem__(self, idx):
        start_idx = idx * self.overalapping_eval
        end_idx = start_idx + self.seq_len
Neel Kant's avatar
Neel Kant committed
67
        tokens = self.tokens[start_idx:end_idx + 1]
Mohammad's avatar
Mohammad committed
68
        num_tokens = len(tokens)
Neel Kant's avatar
Neel Kant committed
69
70
71
72
        pad_mask = [1] * num_tokens
        if num_tokens < self.seq_len + 1:
            num_pad = (self.seq_len + 1 - num_tokens)
            pad_mask += [0] * (num_pad)
Mohammad's avatar
Mohammad committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            tokens += [self.pad_idx] * num_pad
        pad_mask = np.array(pad_mask[1:])
        if self.overalapping_eval != self.seq_len and idx != 0:
            pad_mask[:-self.overalapping_eval] *= 0

        return {'text': np.array(tokens), 'pad_mask': pad_mask}


class _LambadaDataset(torch.utils.data.Dataset):

    def __init__(self, path, pad_idx, tokenizer, seq_len, strict=False):
        print_rank_0('> building lambada dataset from {} ...'.format(path))
        self.seq_len = seq_len
        self.pad_idx = pad_idx
        self.tokenizer = tokenizer
        self.strict = strict

        self.tokens = []
        self.labels = []
        with open(path, 'r') as f:
            for line in f.readlines():
                text = json.loads(line)['text']
                tokens, labels = self.get_tokens(text)
                self.tokens.append(tokens)
                self.labels.append(labels)

    def get_tokens(self, text):
        if not self.strict:
            tokens = self.tokenizer.tokenize(text)
            return tokens[:-1], [tokens[-1]]
        last_token = text.split()[-1]
        start_idx = text.rfind(last_token)
        beginning_tokens = self.tokenizer.tokenize(text[:start_idx].strip())
Neel Kant's avatar
Neel Kant committed
106
        last_token = self.tokenizer.tokenize(' ' + last_token)
Mohammad's avatar
Mohammad committed
107
108
109
110
111
112
113
114
        return beginning_tokens, last_token

    def __len__(self):
        return len(self.tokens)

    def __getitem__(self, idx):
        tokens = self.tokens[idx]
        num_tokens = len(tokens)
Neel Kant's avatar
Neel Kant committed
115
        pad_mask = [0] * num_tokens
Mohammad's avatar
Mohammad committed
116
        labels = self.labels[idx]
Neel Kant's avatar
Neel Kant committed
117
118
        pad_mask += [1] * len(labels)
        tokens = tokens + labels
Mohammad's avatar
Mohammad committed
119
        num_tokens = len(tokens)
Neel Kant's avatar
Neel Kant committed
120
121
122
        if num_tokens < self.seq_len + 1:
            num_pad = (self.seq_len + 1 - num_tokens)
            pad_mask += [0] * (num_pad)
Mohammad's avatar
Mohammad committed
123
124
125
126
127
128
129
130
131
132
133
134
            tokens += [self.pad_idx] * num_pad
        pad_mask = np.array(pad_mask[1:])

        return {'text': np.array(tokens), 'pad_mask': pad_mask}


def _build_lambada_dataset():
    """Build lambada dataset."""
    args = get_args()
    tokenizer = get_tokenizer()

    assert len(args.valid_data) == 1
Raul Puri's avatar
Raul Puri committed
135
    val_dataset = _LambadaDataset(args.valid_data[0], tokenizer.eod, tokenizer,
Mohammad's avatar
Mohammad committed
136
137
138
139
140
141
142
143
144
145
146
147
                                  args.seq_length, args.strict_lambada)
    print_rank_0(' > found {} samples.'.format(len(val_dataset)))

    return val_dataset


def _build_wikitext103_dataset():
    """"""
    args = get_args()
    tokenizer = get_tokenizer()

    assert len(args.valid_data) == 1
Raul Puri's avatar
Raul Puri committed
148
    with open(args.valid_data[0], "rb") as reader:
Mohammad's avatar
Mohammad committed
149
150
        entire_data = reader.read().decode('utf-8')
    num_original_tokens = len(entire_data.strip().split(" "))
Raul Puri's avatar
Raul Puri committed
151
    entire_data = get_detokenizer(args.valid_data[0])(entire_data)
Mohammad's avatar
Mohammad committed
152
153
154
155
156
157
158
159
160
161
    tokenized_data = tokenizer.tokenize(entire_data)
    num_tokenized_tokens = len(tokenized_data)

    val_dataset = _LMDataset(tokenized_data, args.seq_length, tokenizer.eod,
                             num_original_tokens, num_tokenized_tokens,
                             args.overlapping_eval)
    print_rank_0(' > number of original tokens: {}, number of detokenized '
                 'tokens: {}'.format(num_original_tokens, num_tokenized_tokens))

    return val_dataset