finetune.py 3.08 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GLUE finetuning/evaluation."""

Neel Kant's avatar
Neel Kant committed
18
19
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
20
from megatron import get_tokenizer
21
from megatron import mpu
Jared Casper's avatar
Jared Casper committed
22
from megatron.model.classification import Classification
23
24
25
26
from tasks.eval_utils import accuracy_func_provider
from tasks.finetune_utils import finetune


Mohammad's avatar
Mohammad committed
27
def glue_classification(num_classes, Dataset,
28
29
                        name_from_datapath_func):

Mohammad's avatar
Mohammad committed
30
    def train_valid_datasets_provider():
31
        """Build train and validation dataset."""
Mohammad's avatar
Mohammad committed
32
33
34
        args = get_args()
        tokenizer = get_tokenizer()

35
        train_dataset = Dataset('training', args.train_data,
Mohammad's avatar
Mohammad committed
36
                                tokenizer, args.seq_length)
37
        valid_dataset = Dataset('validation', args.valid_data,
Mohammad's avatar
Mohammad committed
38
39
                                tokenizer, args.seq_length)

40
41
        return train_dataset, valid_dataset

Jared Casper's avatar
Jared Casper committed
42
    def model_provider(pre_process=True, post_process=True):
43
        """Build the model."""
Mohammad's avatar
Mohammad committed
44
45
        args = get_args()

46
47
        print_rank_0('building classification model for {} ...'.format(
            args.task))
Jared Casper's avatar
Jared Casper committed
48
49
        model = Classification(num_classes=num_classes, num_tokentypes=2,
                               pre_process=pre_process, post_process=post_process)
Mohammad's avatar
Mohammad committed
50

51
        return model
52

Mohammad's avatar
Mohammad committed
53
    def metrics_func_provider():
54
        """Privde metrics callback function."""
Mohammad's avatar
Mohammad committed
55
56
57
58
        def single_dataset_provider(datapath):
            args = get_args()
            tokenizer = get_tokenizer()

59
            name = name_from_datapath_func(datapath)
Mohammad's avatar
Mohammad committed
60
61
            return Dataset(name, [datapath], tokenizer, args.seq_length)
        return accuracy_func_provider(single_dataset_provider)
62
63

    """Finetune/evaluate."""
Mohammad's avatar
Mohammad committed
64
    finetune(train_valid_datasets_provider, model_provider,
65
66
67
             end_of_epoch_callback_provider=metrics_func_provider)


Mohammad's avatar
Mohammad committed
68
69
def main():
    args = get_args()
70
71
72
73

    if args.task == 'MNLI':

        num_classes = 3
Mohammad's avatar
Mohammad committed
74
        from tasks.glue.mnli import MNLIDataset as Dataset
Neel Kant's avatar
Neel Kant committed
75

76
77
78
79
80
81
82
        def name_from_datapath(datapath):
            return datapath.split('MNLI')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    elif args.task == 'QQP':

        num_classes = 2
Mohammad's avatar
Mohammad committed
83
        from tasks.glue.qqp import QQPDataset as Dataset
Neel Kant's avatar
Neel Kant committed
84

85
86
87
88
89
90
91
92
        def name_from_datapath(datapath):
            return datapath.split('QQP')[-1].strip(
                '.tsv').strip('/').replace('_', '-')

    else:
        raise NotImplementedError('GLUE task {} is not implemented.'.format(
            args.task))

Mohammad's avatar
Mohammad committed
93
    glue_classification(num_classes, Dataset, name_from_datapath)