pretrain_gpt.py 3.81 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
"""Pretrain GPT"""
17
18

import torch
19
from functools import partial
Neel Kant's avatar
Neel Kant committed
20
21
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
22
from megatron import get_timers
Mohammad's avatar
Mohammad committed
23
from megatron import get_tokenizer
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
24
from megatron import mpu
25
from megatron.data.gpt_dataset import build_train_valid_test_datasets
26
from megatron.model import GPTModel
Mohammad's avatar
Mohammad committed
27
from megatron.training import pretrain
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron.utils import get_ltor_masks_and_position_ids
29
from megatron.utils import average_losses_across_data_parallel_group
Mohammad's avatar
Mohammad committed
30

31
def model_provider(pre_process=True, post_process=True):
32
33
    """Build the model."""

34
    print_rank_0('building GPT model ...')
35
36
37
38
39
40
    model = GPTModel(
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
41
42
43
    return model


Mohammad's avatar
Mohammad committed
44
def get_batch(data_iterator):
45
    """Generate a batch"""
Mohammad's avatar
Mohammad committed
46
    args = get_args()
Mohammad's avatar
Mohammad committed
47
    tokenizer = get_tokenizer()
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    data_b = mpu.broadcast_data(keys, data, datatype)

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
66
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
67
        tokens,
Mohammad's avatar
Mohammad committed
68
        tokenizer.eod,
69
        args.reset_position_ids,
70
        args.reset_attention_mask,
71
        args.eod_mask_loss)
72
73
74

    return tokens, labels, loss_mask, attention_mask, position_ids

75
76
77
78
def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
79

80
81
82
83
84
85
86
    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
87
    """Forward step."""
88
    args = get_args()
Mohammad's avatar
Mohammad committed
89
    timers = get_timers()
90
91

    # Get the batch.
mohammad's avatar
mohammad committed
92
    timers('batch-generator').start()
93
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
Mohammad's avatar
Mohammad committed
94
        data_iterator)
mohammad's avatar
mohammad committed
95
    timers('batch-generator').stop()
96

97
98
    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)
99

100
    return output_tensor, partial(loss_func, loss_mask)
101
102


103
104
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
105
    args = get_args()
Mohammad's avatar
Mohammad committed
106

107
    print_rank_0('> building train, validation, and test datasets '
108
                 'for GPT ...')
109
110
111
112
113
114
115
116
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
        skip_warmup=(not args.mmap_warmup))
117
    print_rank_0("> finished creating GPT datasets ...")
118

119
    return train_ds, valid_ds, test_ds
120
121
122


if __name__ == "__main__":
123

124
    pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
125
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})