language_model.py 18.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28
29
30
31
32

def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
    # Parallel logits.
33
    input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
34
35
36
37
38
39
40
41
    # Matrix multiply.
    if bias is None:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight)
    else:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight, bias)
    # Gather if needed.
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
42

43
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
44
45


46
def get_language_model(num_tokentypes, add_pooler,
47
48
                       encoder_attn_mask_type, init_method=None,
                       scaled_init_method=None, add_decoder=False,
49
50
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
Mohammad's avatar
Mohammad committed
51
    """Build language model and return along with the key to save."""
52
    args = get_args()
Mohammad's avatar
Mohammad committed
53

54
55
56
57
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
58
59
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
60

61
    # Language model.
62
63
64
65
66
67
68
69
70
71
72
    language_model = TransformerLanguageModel(
        init_method,
        scaled_init_method,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process
    )
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)

    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

131
132
        args = get_args()

133
134
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
135
136
            vocab_size, self.hidden_size,
            init_method=self.init_method)
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
        self.init_method(self.position_embeddings.weight)

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
            self.init_method(self.tokentype_embeddings.weight)
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
176
        args = get_args()
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
240
        if self.num_tokentypes > 0:
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


258
class TransformerLanguageModel(MegatronModule):
259
260
261
262
263
264
265
266
267
268
269
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
270

271
    def __init__(self,
Mohammad's avatar
Mohammad committed
272
273
                 init_method,
                 output_layer_init_method,
274
                 encoder_attn_mask_type,
275
                 num_tokentypes=0,
276
                 add_decoder=False,
277
                 decoder_attn_mask_type=AttnMaskType.causal,
278
279
280
281
                 add_pooler=False,
                 pre_process=True,
                 post_process=True):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
282
        args = get_args()
283

284
285
        self.pre_process = pre_process
        self.post_process = post_process
Mohammad's avatar
Mohammad committed
286
        self.hidden_size = args.hidden_size
287
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
288
        self.init_method = init_method
289
        self.encoder_attn_mask_type = encoder_attn_mask_type
290
        self.add_decoder = add_decoder
291
        self.decoder_attn_mask_type = decoder_attn_mask_type
292
293
        self.add_pooler = add_pooler

294
        # Embeddings.
295
        if self.pre_process:
296
297
298
299
300
301
302
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
303

304
        # Transformer.
305
306
307
        self.encoder = ParallelTransformer(
            self.init_method,
            output_layer_init_method,
308
309
310
311
            self_attn_mask_type=self.encoder_attn_mask_type,
            pre_process=self.pre_process,
            post_process=self.post_process
        )
312
313
        self._encoder_key = 'encoder'

Vijay Korthikanti's avatar
Vijay Korthikanti committed
314
315
316
317
318
319
320
321
        # Decoder
        if self.add_decoder:
            assert args.pipeline_model_parallel_size == 1, \
                'pipeline parallelism is not supported in the presence of decoder'
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
322
                self_attn_mask_type=self.decoder_attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
323
            self._decoder_key = 'decoder'
324

325
        if self.post_process:
326
327
328
329
330
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

331
    def set_input_tensor(self, input_tensor):
332
        """ See megatron.model.transformer.set_input_tensor()"""
333
334
335
336
        self.encoder.set_input_tensor(input_tensor)

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
337
                enc_dec_attn_mask=None, tokentype_ids=None, layer_past=None,
338
                get_key_value=False, pooling_sequence_index=0,
339
                enc_hidden_states=None, output_enc_hidden=False):
340
341

        # Embeddings.
342
343
        if self.pre_process:
            embedding_output = self.embedding(enc_input_ids, enc_position_ids,
344
                                              tokentype_ids=tokentype_ids)
345
            encoder_input = embedding_output
346
        else:
347
            encoder_input = None
348
349
350
351

        # encoder.
        if enc_hidden_states is None:
            encoder_output = self.encoder(encoder_input,
352
                                          enc_attn_mask,
353
354
355
356
357
                                          layer_past=layer_past,
                                          get_key_value=get_key_value)
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

358
        if self.post_process:
359
360
361
362
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
363
364
365
366
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
367
            if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
368
                return encoder_output, pooled_output
369
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
370
371
372
373
374
375
376
377
378
379
380
381
382
                return encoder_output

        # Decoder Embedding
        dec_embedding_output = self.embedding(dec_input_ids,
                                              dec_position_ids)
        # decoder
        decoder_output = self.decoder(dec_embedding_output,
                                      dec_attn_mask,
                                      layer_past=layer_past,
                                      get_key_value=get_key_value,
                                      encoder_output=encoder_output,
                                      enc_dec_attn_mask=enc_dec_attn_mask)

383
        if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
384
385
386
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
387
388
389
390
391
392

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
393
        if self.pre_process:
394
395
396
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
397
398
        state_dict_[self._encoder_key] \
            = self.encoder.state_dict_for_save_checkpoint(
399
                destination, prefix, keep_vars)
400
        if self.post_process:
401
402
403
404
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
405
406
407
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
408
409
410
411
412
413
414
415
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
416
        if self.pre_process:
417
418
419
420
421
422
423
424
425
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
426

427
428
429
430
431
432
        # Encoder.
        if self._encoder_key in state_dict:
            state_dict_ = state_dict[self._encoder_key]
        # for backward compatibility.
        elif 'transformer' in state_dict:
            state_dict_ = state_dict['transformer']
433
434
435
436
437
438
439
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'transformer.' in key:
                    state_dict_[key.split('transformer.')[1]] = state_dict[key]

440
441
442
443
444
445
446
447
448
449
450
451
        # for backward compatibility.
        state_dict_self_attention = {}
        for key in state_dict_.keys():
            if '.attention.' in key:
                state_dict_self_attention[key.replace(".attention.",
                    ".self_attention.")] = state_dict_[key]
            else:
                state_dict_self_attention[key] = state_dict_[key]
        state_dict_ = state_dict_self_attention

        self.encoder.load_state_dict(state_dict_, strict=strict)

452
        if self.post_process:
453
454
455
456
457
458
            # pooler
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
459
460
461
        # decoder
        if self.add_decoder:
            assert 'decoder' in state_dict, \
462
                'could not find data for pooler in the checkpoint'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
463
464
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)