distributed.py 8.27 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
17
18
from abc import ABC
from abc import abstractmethod

Raul Puri's avatar
Raul Puri committed
19
20
21
import torch
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
22
from megatron import get_args
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
23
from megatron import mpu
24
from .module import MegatronModule
Raul Puri's avatar
Raul Puri committed
25

26

Raul Puri's avatar
Raul Puri committed
27

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class MemoryBuffer:

    def __init__(self, numel, dtype):
        self.numel = numel
        self.dtype = dtype
        self.data = torch.zeros(self.numel,
                                dtype=self.dtype,
                                device=torch.cuda.current_device(),
                                requires_grad=False)


    def zero(self):
        """Reset the buffer to zero."""
        self.data.zero_()


    def get(self, shape, start_index):
        """Return a tensor with the input `shape` as a view into the
        1-D data starting at `start_index`."""
        end_index = start_index + shape.numel()
        assert end_index <= self.numel, \
            'requested tensor is out of the buffer range.'
        buffer_tensor = self.data[start_index:end_index]
        buffer_tensor = buffer_tensor.view(shape)
        return buffer_tensor


Raul Puri's avatar
Raul Puri committed
55

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
56
57
58
59
60
61
class DistributedDataParallelBase(MegatronModule, ABC):
    """Abstract class for DDP."""

    def __init__(self, module):
        super(DistributedDataParallelBase, self).__init__()
        # Keep a pointer to the model.
Raul Puri's avatar
Raul Puri committed
62
        self.module = module
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
63
64
65
66
67
68


    @abstractmethod
    def allreduce_gradients(self):
        pass

Raul Puri's avatar
Raul Puri committed
69
70
71
72

    def forward(self, *inputs, **kwargs):
        return self.module(*inputs, **kwargs)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
73

Raul Puri's avatar
Raul Puri committed
74
    def state_dict(self, destination=None, prefix='', keep_vars=False):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
75
        return self.module.state_dict(destination, prefix, keep_vars)
Raul Puri's avatar
Raul Puri committed
76
77


78
79
80
81
82
    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        return self.module.state_dict_for_save_checkpoint(destination, prefix,
                                                          keep_vars)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83

Raul Puri's avatar
Raul Puri committed
84
85
86
    def load_state_dict(self, state_dict, strict=True):
        self.module.load_state_dict(state_dict, strict=strict)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218


class DistributedDataParallel(DistributedDataParallelBase):
    """DDP with contiguous buffers options to storre and accumulate gradients.
    This class:
        - has the potential to reduce memory fragmentation.
        - provides the option to do the gradient accumulation
          in a type other than the params type (for example fp32)

    Arguments:
        module: input model.
        accumulate_allreduce_grads_in_fp32: if true do the gradient accumulation
            and the gradient all-reduce all in in float32. If this option is
            true, we require `use_contiguous_buffers` to be true too.
        use_contiguous_buffers: if true, use a contiguous buffer to store the
            gradients.
    """

    def __init__(self, module,
                 accumulate_allreduce_grads_in_fp32,
                 use_contiguous_buffers):

        super(DistributedDataParallel, self).__init__(module)

        self.accumulate_allreduce_grads_in_fp32 \
            = accumulate_allreduce_grads_in_fp32
        self.use_contiguous_buffers = use_contiguous_buffers
        # If we are using fp32-accumulate-allreduce explicitly
        # this means we need main grads in a continous buffer.
        if self.accumulate_allreduce_grads_in_fp32:
            assert self.use_contiguous_buffers

        # ===================================
        # Rest of this part applies only to
        # the case we use continuous buffers.
        # ===================================
        self._grad_buffers = None
        if self.use_contiguous_buffers:
            self._grad_buffers = {}

            # Simple function to define buffer type.
            def _get_buffer_type(param):
                return torch.float if \
                    self.accumulate_allreduce_grads_in_fp32 else param.dtype

            # First calculate total number of elements per type.
            type_num_elements = {}
            for param in self.module.parameters():
                if param.requires_grad:
                    dtype = _get_buffer_type(param)
                    type_num_elements[dtype] = type_num_elements.get(dtype, 0) \
                                               + param.data.nelement()

            # Allocate the buffer.
            for dtype, num_elements in type_num_elements.items():
                self._grad_buffers[dtype] = MemoryBuffer(num_elements, dtype)

            # Assume the back prop order is reverse the params order,
            # store the start index for the gradients.
            for param in self.module.parameters():
                if param.requires_grad:
                    dtype = _get_buffer_type(param)
                    type_num_elements[dtype] -= param.data.nelement()
                    param.main_grad = self._grad_buffers[dtype].get(
                        param.data.shape, type_num_elements[dtype])

            # Backward hook.
            # Accumalation function for the gradients. We need
            # to store them so they don't go out of scope.
            self.grad_accs = []
            # Loop over all the parameters in the model.
            for param in self.module.parameters():
                if param.requires_grad:
                    # Expand so we get access to grad_fn.
                    param_tmp = param.expand_as(param)
                    # Get the gradient accumulator functtion.
                    grad_acc = param_tmp.grad_fn.next_functions[0][0]
                    grad_acc.register_hook(self._make_param_hook(param))
                    self.grad_accs.append(grad_acc)


    def _make_param_hook(self, param):
        """Create the all-reduce hook for backprop."""
        # Hook used for back-prop.
        def param_hook(*unused):
            # Add the gradient to the buffer.
            if param.grad.data is not None:
                param.main_grad.add_(param.grad.data)
                # Now we can deallocate grad memory.
                param.grad = None
        return param_hook


    def zero_grad_buffer(self):
        """Set the grad buffer data to zero. Needs to be called at the
        begining of each iteration."""
        assert self._grad_buffers is not None, 'buffers are not initialized.'
        for _, buffer_ in self._grad_buffers.items():
            buffer_.zero()


    def allreduce_gradients(self):
        """Reduce gradients across data parallel ranks."""
        # If we have buffers, simply reduce the data in the buffer.
        if self._grad_buffers is not None:
            for _, buffer_ in self._grad_buffers.items():
                buffer_.data /= mpu.get_data_parallel_world_size()
                torch.distributed.all_reduce(
                    buffer_.data, group=mpu.get_data_parallel_group())
        else:
            # Otherwise, bucketize and all-reduce
            buckets = {}
            # Pack the buckets.
            for param in self.module.parameters():
                if param.requires_grad and param.grad is not None:
                    tp = param.data.type()
                    if tp not in buckets:
                        buckets[tp] = []
                    buckets[tp].append(param)
                    param.main_grad = param.grad

            # For each bucket, all-reduce and copy all-reduced grads.
            for tp in buckets:
                bucket = buckets[tp]
                grads = [param.grad.data for param in bucket]
                coalesced = _flatten_dense_tensors(grads)
                coalesced /= mpu.get_data_parallel_world_size()
                torch.distributed.all_reduce(
                    coalesced, group=mpu.get_data_parallel_group())
                for buf, synced in zip(grads, _unflatten_dense_tensors(
                        coalesced, grads)):
                    buf.copy_(synced)