vit_dataset.py 1.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
Vijay Korthikanti's avatar
Vijay Korthikanti committed
16
import torch
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from torchvision import datasets, transforms
from megatron.data.autoaugment import ImageNetPolicy


def build_train_valid_datasets(data_path, crop_size=224, color_jitter=True):

    # training dataset
    train_data_path = os.path.join(data_path[0], "train")
    normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    process = [
        transforms.RandomResizedCrop(crop_size),
        transforms.RandomHorizontalFlip(),
    ]
    if color_jitter:
        process += [
            transforms.ColorJitter(
                brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1
            )
        ]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
36
37
    fp16_t = transforms.ConvertImageDtype(torch.half)
    process += [ImageNetPolicy(), transforms.ToTensor(), normalize, fp16_t]
38
39
40
41
42
43
44
45
46
47
48
49
50
    transform_train = transforms.Compose(process)
    train_data = datasets.ImageFolder(
        root=train_data_path, transform=transform_train
    )

    # validation dataset
    val_data_path = os.path.join(data_path[0], "val")
    transform_val = transforms.Compose(
        [
            transforms.Resize(crop_size),
            transforms.CenterCrop(crop_size),
            transforms.ToTensor(),
            normalize,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
            fp16_t
52
53
54
55
56
57
58
        ]
    )
    val_data = datasets.ImageFolder(
        root=val_data_path, transform=transform_val
    )

    return train_data, val_data